A Prediction Model for Electricity Consumption in the Beijing-Tianjin-Tangshan Region Based on Informer

Currently, the Beijing-Tianjin-Tangshan region is in an important period of transformation, with the construction and promotion of the electricity market requiring more diverse and accurate electricity services. In the prediction, climate change has a certain impact on medium to long-term changes in...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA) pp. 1136 - 1141
Main Authors Li, Yanbin, Yu, Le, Chen, Xi, Shi, Fan, Xie, Xu, Ruan, Yangrui
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.02.2024
Subjects
Online AccessGet full text
DOI10.1109/EEBDA60612.2024.10485657

Cover

Abstract Currently, the Beijing-Tianjin-Tangshan region is in an important period of transformation, with the construction and promotion of the electricity market requiring more diverse and accurate electricity services. In the prediction, climate change has a certain impact on medium to long-term changes in electricity consumption. However, due to the large amount of meteorological data and difficulties in processing, previous studies have found it difficult to consider multiple meteorological data. In this paper, the meteorological data is firstly clustered and analyzed by clustering algorithm named DBSCAN, and then the data in the same cluster is dimensionality reduced. Then, based on the dimensionality reduction data, the informer model is trained using the electricity consumption data and the meteorological data. Finally, based on the case study using the data sets from Beijing-Tianjin-Tangshan region, the prediction model for electricity consumption proposed in the paper is compared with other models to verify the effectiveness of the proposed algorithm.
AbstractList Currently, the Beijing-Tianjin-Tangshan region is in an important period of transformation, with the construction and promotion of the electricity market requiring more diverse and accurate electricity services. In the prediction, climate change has a certain impact on medium to long-term changes in electricity consumption. However, due to the large amount of meteorological data and difficulties in processing, previous studies have found it difficult to consider multiple meteorological data. In this paper, the meteorological data is firstly clustered and analyzed by clustering algorithm named DBSCAN, and then the data in the same cluster is dimensionality reduced. Then, based on the dimensionality reduction data, the informer model is trained using the electricity consumption data and the meteorological data. Finally, based on the case study using the data sets from Beijing-Tianjin-Tangshan region, the prediction model for electricity consumption proposed in the paper is compared with other models to verify the effectiveness of the proposed algorithm.
Author Xie, Xu
Li, Yanbin
Chen, Xi
Shi, Fan
Yu, Le
Ruan, Yangrui
Author_xml – sequence: 1
  givenname: Yanbin
  surname: Li
  fullname: Li, Yanbin
  email: li.yanbin@nc.sgcc.com.cn
  organization: Corporation of China,North China Branch of State Grid,Beijing,China
– sequence: 2
  givenname: Le
  surname: Yu
  fullname: Yu, Le
  email: yu.le@nc.sgcc.com.cn
  organization: Corporation of China,North China Branch of State Grid,Beijing,China
– sequence: 3
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  email: chen.xi.i@nc.sgcc.com.cn
  organization: Corporation of China,North China Branch of State Grid,Beijing,China
– sequence: 4
  givenname: Fan
  surname: Shi
  fullname: Shi, Fan
  email: shi.fan@nc.sgcc.com.cn
  organization: Corporation of China,North China Branch of State Grid,Beijing,China
– sequence: 5
  givenname: Xu
  surname: Xie
  fullname: Xie, Xu
  email: xie.xu@nc.sgcc.com.cn
  organization: Corporation of China,North China Branch of State Grid,Beijing,China
– sequence: 6
  givenname: Yangrui
  surname: Ruan
  fullname: Ruan, Yangrui
  email: yrruan@tsingsoft.com.cn
  organization: Beijing Tsingsoft Co., Ltd,Beijing,China
BookMark eNo1j7tOwzAYRo0EA5S-AYNfIMGO49uYhEArFYFQmCsn_p0aNU7lhKFvT7hN3xmOjvTdoMswBkAIU5JSSvR9XZcPhSCCZmlGsjylJFdccHmB1lpqxThhimilr1Ff4NcI1nezHwN-Hi0csRsjro_QzdF3fj7jagzT53D6MXzA8wFwCf7Dhz5pvAkLJI0J_XQwAb9B_62VZgKLF9iGpTZAvEVXzhwnWP_tCr0_1k21SXYvT9uq2CWeUj0nShmwum1zwR0DB0paJrQ1MmulZkp3jHEHLAMtac5ly5joiLHOCE2Ms4Kt0N1v1wPA_hT9YOJ5__-ffQGFY1ab
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EEBDA60612.2024.10485657
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350380989
EndPage 1141
ExternalDocumentID 10485657
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-88aed9bb465f3efe87d369da72b79389c335fe32e971457b336c0adfa690afd63
IEDL.DBID RIE
IngestDate Wed May 01 11:49:11 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-88aed9bb465f3efe87d369da72b79389c335fe32e971457b336c0adfa690afd63
PageCount 6
ParticipantIDs ieee_primary_10485657
PublicationCentury 2000
PublicationDate 2024-Feb.-27
PublicationDateYYYYMMDD 2024-02-27
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.-27
  day: 27
PublicationDecade 2020
PublicationTitle 2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA)
PublicationTitleAbbrev EEBDA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8664035
Snippet Currently, the Beijing-Tianjin-Tangshan region is in an important period of transformation, with the construction and promotion of the electricity market...
SourceID ieee
SourceType Publisher
StartPage 1136
SubjectTerms Analytical models
Clustering algorithms
DBSCAN
Dimensionality reduction
Electricity
Informer
meteorological data
PCA
Prediction algorithms
Predictive models
Time series analysis
Title A Prediction Model for Electricity Consumption in the Beijing-Tianjin-Tangshan Region Based on Informer
URI https://ieeexplore.ieee.org/document/10485657
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7YTpwAMcRbOXBt6ZpXc9xGp4nDhNAm7TYlTTIKqEOju_DrcdIVBBISN8uK2sqp-zm1PxuhGy19D3AOnuYSElFqSaSE45EmUiuilLImVFtM-WRO7xdssSOrBy6MtTYUn9nYiyGXb9bF1v8qAw-nmU_TdVBHCNmQtdrqnETe5vnwbsA9ZsO5L6Vxu_zH4JSAG-MDNG3v2JSLvMTbWsfFx69mjP9-pEPU-6bo4Ycv8DlCe7Y6RqsB6HzmxVsb-zFnrxiCUpyHWTdlARE3HgXOZfhQ4LLCEP_hoS2f4SLRDF4VEKKZqlbvT6rCj9ZXK-MhIJ3BIDTcJbvpofk4n40m0W6SQlT2-7KOsgxsLrWmnDlinc2EIVwaJVIN_pnJghDmLEmtFH3KhCaEF4kyTsHZWTnDyQnqVuvKniJMSaINYYYyqqgRTCawlIkiNQIUTp2hnrfS8q1plrFsDXT-h_4C7fvNCixxcYm69WZrrwDna30d9vcTB-aqGA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHOAEiCHe5MC1pWuSpjluo9OAMSHUSbtNSZNCAXVodBd-PU66gkBC4mZZbVo5cW3X_myELpSwPcAj0LQ8IB6lhniS55GniFCSSCmNdtUW42g4oTdTNl2B1R0Wxhjjis-Mb0mXy9fzbGl_lYGG09im6dbRBoOwgtdwraY-JxCXSdK76kbWakPkF1K_ueHH6BRnOQbbaNw8sy4YefGXlfKzj1_tGP_9Ujuo_Q3Sw_df5mcXrZlyDz12gWdzL1be2A46e8XgluLETbspMvC5cd-hLt2nAhclBg8Q90zxDIt4KRwWILxUlo_vT7LED8bWK-Me2DqNgajRS2bRRpNBkvaH3mqWgld0OqLy4hikLpSiEcuJyU3MNYmEljxUoKGxyAhhuSGhEbxDGVeERFkgdS4hepa5jsg-apXz0hwgTEmgNGGaMiqp5kwEcCnjWag5MHJ5iNpWSrO3ul3GrBHQ0R_8c7Q5TO9Gs9H1-PYYbdmNc5hxfoJa1WJpTsHqV-rM7fUnJRutaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+3rd+International+Conference+on+Electrical+Engineering%2C+Big+Data+and+Algorithms+%28EEBDA%29&rft.atitle=A+Prediction+Model+for+Electricity+Consumption+in+the+Beijing-Tianjin-Tangshan+Region+Based+on+Informer&rft.au=Li%2C+Yanbin&rft.au=Yu%2C+Le&rft.au=Chen%2C+Xi&rft.au=Shi%2C+Fan&rft.date=2024-02-27&rft.pub=IEEE&rft.spage=1136&rft.epage=1141&rft_id=info:doi/10.1109%2FEEBDA60612.2024.10485657&rft.externalDocID=10485657