Self-organising Distributed Sensor Fusion Networks for Hierarchical Swarm Control and Supervision
Mobile sensor networks can be realised using robot swarms where simple robots interact only locally to achieve swarm scalability and robustness. One of the main challenges is to develop suitable sensor fusion methods, both for autonomous swarms and human supervisory control, without gravely reducing...
Saved in:
| Published in | IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems pp. 1 - 6 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
27.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2767-9357 |
| DOI | 10.1109/SDF-MFI59545.2023.10361518 |
Cover
| Abstract | Mobile sensor networks can be realised using robot swarms where simple robots interact only locally to achieve swarm scalability and robustness. One of the main challenges is to develop suitable sensor fusion methods, both for autonomous swarms and human supervisory control, without gravely reducing the benefits of decentralisation. Hence, we introduce the Self-organising Hierarchical Extending (SHE) approach for distributed sensor fusion in robot swarms under communication and control constraints found in harsh, heterogeneous, and dynamic environments. The SHE approach is designed for fast autonomous swarm control in local environments, radially extending the sensor-effector range of a central node for global autonomous or human supervisory control. We discuss possible approaches to distributed object search and a SHE fusion architecture. An exemplary simulation based on the virtual pheromone approach provides a proof of concept for a self-organised, hierarchical, and extending fusion topology with a minimal robot controller. |
|---|---|
| AbstractList | Mobile sensor networks can be realised using robot swarms where simple robots interact only locally to achieve swarm scalability and robustness. One of the main challenges is to develop suitable sensor fusion methods, both for autonomous swarms and human supervisory control, without gravely reducing the benefits of decentralisation. Hence, we introduce the Self-organising Hierarchical Extending (SHE) approach for distributed sensor fusion in robot swarms under communication and control constraints found in harsh, heterogeneous, and dynamic environments. The SHE approach is designed for fast autonomous swarm control in local environments, radially extending the sensor-effector range of a central node for global autonomous or human supervisory control. We discuss possible approaches to distributed object search and a SHE fusion architecture. An exemplary simulation based on the virtual pheromone approach provides a proof of concept for a self-organised, hierarchical, and extending fusion topology with a minimal robot controller. |
| Author | Rockbach, Jonas D. Bennewitz, Maren Schlangen, Isabel |
| Author_xml | – sequence: 1 givenname: Jonas D. surname: Rockbach fullname: Rockbach, Jonas D. email: jonas.rockbach@fkie.fraunhofer.de organization: Fraunhofer FKIE,Human-Machine Systems,Wachtberg,Germany – sequence: 2 givenname: Isabel surname: Schlangen fullname: Schlangen, Isabel organization: Fraunhofer FKIE,Sensor Data and Information Fusion,Wachtberg,Germany – sequence: 3 givenname: Maren surname: Bennewitz fullname: Bennewitz, Maren organization: University of Bonn,Humanoid Robots Lab,Bonn,Germany |
| BookMark | eNo1kM1OwzAQhA0CiVL6Bhws7gl2HP8dUUtopQKHwLnaJHYxpHZlp1S8PUHAaKSVRvPtYS7RmQ_eIHRDSU4p0bf1osoeqxXXvOR5QQqWU8IE5VSdoJmWWjFOmCq4kqdoUkghM824vECzlN4JIXSsai4mCGrT2yzELXiXnN_ihUtDdM1hMB2ujU8h4uqQXPD4yQzHED8StmO2dCZCbN9cCz2ujxB3eB78EEOPwY_kYW_ip_vhrtC5hT6Z2d-dotfq_mW-zNbPD6v53TpzlOohU6xrgLfMAGmtBMWhMaOoKDsiRnNFhBKUlZ1iLS2lkaUmUHbWNrZRDWVTdP37143YZh_dDuLX5n8V9g1AVlus |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SDF-MFI59545.2023.10361518 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350382587 |
| EISSN | 2767-9357 |
| EndPage | 6 |
| ExternalDocumentID | 10361518 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI KZ1 M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i119t-83dba5c3ea0cf7a85abeeee164d06d06580686134d83c147e7490a4dffbfb8b13 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:25:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-83dba5c3ea0cf7a85abeeee164d06d06580686134d83c147e7490a4dffbfb8b13 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10361518 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Nov.-27 |
| PublicationDateYYYYMMDD | 2023-11-27 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems |
| PublicationTitleAbbrev | SDF-MFI |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001615956 |
| Score | 1.8552955 |
| Snippet | Mobile sensor networks can be realised using robot swarms where simple robots interact only locally to achieve swarm scalability and robustness. One of the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | centralization vs. decentralization Data integration distributed sensor fusion hierarchical control human-swarm interaction mobile sensor networks Network topology Robot sensing systems Scalability Sensor fusion Supervisory control Swarm robotics virtual pheromone |
| Title | Self-organising Distributed Sensor Fusion Networks for Hierarchical Swarm Control and Supervision |
| URI | https://ieeexplore.ieee.org/document/10361518 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uT_ribeKdPPiamizJmj5vlilsCHWwt5GkCQxnJ7NF8Nebr92cCoJvJSUhF9rvku-cg9ANp44prxnp9qwmwb-VxGhliUwUpx4kr2qy6tG4N5yIh6mcrsHqNRbGOVcXn7kIHuu7_HxpK0iVhS-cgwFWLdSKVa8Ba20TKuFVcPbXxKKMJrfZICWj9D60ChmBTHi0GeCHlEptSdJ9NN7MoSkgeY6q0kT24xc9478neYA6W9AefvwyR4doxxVHaO8b3-Ax0plbeNIIOUGOAA-ANhcUr1yOsxDQLlc4rSB_hsdNefgbDk4tHs4Bplyrpixw9q5XL7jflLhjXYSe1Sv8caBfB03Su6f-kKw1FsicsaQkiudGS8udptbHWkltwopcCKJy2svBPwEMCeMiV9wyEbtYJFSL3HvjjTKMn6B2sSzcKcIyppo6aaVnWhiWJHmIlpwyXceFjaU_Qx3YrdlrQ6Mx22zU-R_tF2gXDg2Af934ErXLVeWuggdQmuv65D8B61qxNA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4UD-rFL4zf9uC1c6Ut687gAgrEBEi4kbZrEyIOgiwm_nr7biBqYuJt6dKl7ba-H32f50HojoWWSqcoqdWNIt6_FUQraYiIJQsdSF4VZNXdXr015I8jMVqB1QssjLW2KD6zAVwWZ_npzOSQKvN_OAMDLLfRjuCcixKutUmp-Jve3V9Ri9Iwvu83E9JN2r6ViwCEwoP1I36IqRS2JDlAvfUoyhKSlyBf6sB8_CJo_PcwD1F1A9vDz18G6Qht2ewY7X9jHDxBqm-njpRSTpAlwE0gzgXNK5vivg9pZwuc5JBBw72yQPwNe7cWtyYAVC50U6a4_64Wr7hRFrljlfme-Rz2HOhXRcPkYdBokZXKAplQGi-JZKlWwjCrQuMiJYXSfkbWh1FpWE_BQwEUCWU8lcxQHtmIx6HiqXPaaakpO0WVbJbZM4RFFKrQCiMcVVzTOE59vGSlrlnGTSTcOarCao3nJZHGeL1QF3-036Ld1qDbGXfavadLtAcvEGCAtegKVZaL3F57f2Cpb4qv4BNevbSB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FSICE%2FRSJ+International+Conference+on+Multisensor+Fusion+and+Integration+for+Intelligent+Systems&rft.atitle=Self-organising+Distributed+Sensor+Fusion+Networks+for+Hierarchical+Swarm+Control+and+Supervision&rft.au=Rockbach%2C+Jonas+D.&rft.au=Schlangen%2C+Isabel&rft.au=Bennewitz%2C+Maren&rft.date=2023-11-27&rft.pub=IEEE&rft.eissn=2767-9357&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSDF-MFI59545.2023.10361518&rft.externalDocID=10361518 |