AutoMTLSpec: Learning to Generate MTL Specifications from Natural Language Contracts

A smart legal contract is a legally binding contract in which some or all of the contractual obligations are defined and performed automatically by a computer program. As its software requirement, the legal contract is composed of legal clauses expressing the execution logic and time constraints bet...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Conference on Engineering of Complex Computer Systems. Online) pp. 71 - 80
Main Authors Ge, Ning, Yang, Jinwen, Yu, Tianyu, Liu, Wei
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.06.2023
Subjects
Online AccessGet full text
ISSN2770-8535
DOI10.1109/ICECCS59891.2023.00018

Cover

Abstract A smart legal contract is a legally binding contract in which some or all of the contractual obligations are defined and performed automatically by a computer program. As its software requirement, the legal contract is composed of legal clauses expressing the execution logic and time constraints between events in natural language. When formally verifying a smart legal contract to ensure the requirements' conformance, it is necessary to translate the time-constrained functional requirements (TFRs) into property specifications like Metric temporal logic (MTL) as the input of a model checker. Instead of costly and error-prone manual writing, this work automates the TFR detection and the specification generation using deep learning, named AutoMTL-Spec. We separate the MTL specification generation approach into four tasks: TFR detection, intermediate representation structure extraction, event sequence/time point extraction, and MTL generation, respectively. We construct a dataset including 43 contracts of four categories, 4608 terms, and 277 TFRs. The experimental results showed that all three models significantly outperform the baselines. Most of the indicators of the three learning tasks reached near to or more than 90%.
AbstractList A smart legal contract is a legally binding contract in which some or all of the contractual obligations are defined and performed automatically by a computer program. As its software requirement, the legal contract is composed of legal clauses expressing the execution logic and time constraints between events in natural language. When formally verifying a smart legal contract to ensure the requirements' conformance, it is necessary to translate the time-constrained functional requirements (TFRs) into property specifications like Metric temporal logic (MTL) as the input of a model checker. Instead of costly and error-prone manual writing, this work automates the TFR detection and the specification generation using deep learning, named AutoMTL-Spec. We separate the MTL specification generation approach into four tasks: TFR detection, intermediate representation structure extraction, event sequence/time point extraction, and MTL generation, respectively. We construct a dataset including 43 contracts of four categories, 4608 terms, and 277 TFRs. The experimental results showed that all three models significantly outperform the baselines. Most of the indicators of the three learning tasks reached near to or more than 90%.
Author Ge, Ning
Yang, Jinwen
Yu, Tianyu
Liu, Wei
Author_xml – sequence: 1
  givenname: Ning
  surname: Ge
  fullname: Ge, Ning
  email: gening@buaa.edu.cn
  organization: Beihang University,School of Software,Beijing,China
– sequence: 2
  givenname: Jinwen
  surname: Yang
  fullname: Yang, Jinwen
  organization: Beihang University,School of Software,Beijing,China
– sequence: 3
  givenname: Tianyu
  surname: Yu
  fullname: Yu, Tianyu
  email: yu-ty21@mails.tsinghua.edu.cn
  organization: Tsinghua University,Shenzhen International Graduate School,Shenzhen,China
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: liuwei@ceprei.com
  organization: China Electronic Product Reliability and Environmental Testing Research Institute,Guangzhou,China
BookMark eNotjlFLwzAUhaMoOOf-gUj-QOdNbkoa30aZc1D1YfN5pO1NiWzpSNMH_72V-XQOfB-Hc89uQh-IsScBSyHAPG_LdVnuclMYsZQgcQkAorhiC6NNgTmgAlDqms2k1pAVOeZ3bDEM35OGKEGjnLH9akz9-77anal54RXZGHzoeOr5hgJFm4hPlP9h73xjk-_DwF3sT_zDpjHaI69s6EbbES_7kKJt0vDAbp09DrT4zzn7el3vy7es-txsy1WVeSFMynRjSGmaPitSrWxsbaauVVsXgNoVrVRKg2iNRDI1EDqpwLkaDDa1kArn7PGy64nocI7-ZOPPQQBKYXKFv5RRU2I
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICECCS59891.2023.00018
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Law
Computer Science
EISBN 9798350340044
EISSN 2770-8535
EndPage 80
ExternalDocumentID 10321954
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Research and Development
  funderid: 10.13039/100006190
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-7c9e47e0184e4d2cab901874db8037f8d244701d923e9b0e3f240ffb093cb1243
IEDL.DBID RIE
IngestDate Wed Aug 27 02:37:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-7c9e47e0184e4d2cab901874db8037f8d244701d923e9b0e3f240ffb093cb1243
PageCount 10
ParticipantIDs ieee_primary_10321954
PublicationCentury 2000
PublicationDate 2023-June-14
PublicationDateYYYYMMDD 2023-06-14
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings (International Conference on Engineering of Complex Computer Systems. Online)
PublicationTitleAbbrev ICECCS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003320732
Score 1.8396722
Snippet A smart legal contract is a legally binding contract in which some or all of the contractual obligations are defined and performed automatically by a computer...
SourceID ieee
SourceType Publisher
StartPage 71
SubjectTerms Deep learning
formal specification generation
Law
Manuals
Measurement
metric temporal property
Natural languages
smart legal contract
Software
time-constrained functional requirements
Writing
Title AutoMTLSpec: Learning to Generate MTL Specifications from Natural Language Contracts
URI https://ieeexplore.ieee.org/document/10321954
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ0_TOfGbHLx2a5u0SbxJ2ZiyDcENdhvNl4iwirYI_vXmpe0UQfBSQntIeS_lffT9fj-ErplhikqtgjSVaeDy_zzg7hpYm1KuqSCJLxTni3S6ovfrZN2A1T0Wxhjjh8_MEJb-X74uVAWtshGQvwFDWQd13DmrwVq7hgohsTuucYMCjkIxusvGWfaYCC6gEIyByjQEcY8fMio-ikx6aNHuXw-PvAyrUg7V5y9qxn-_4AEafAP28MMuFB2iPbPto16r2ICbD7iPOrP84wgtb6uymC9noD1_gxuG1SdcFrgmoS4Ndk-xl6a3bU8PAxAFL3LP04FnTZsTA7sVAK3eB2g1GS-zadCoKwTPUSTKgClhKDPOItRQHatcCi_QpyUPCbNcu8DPwki7DNAIGRpiXfC3VoaCKOmyAnKMuttia04QjiThNAotixNJlbA84Syn0oL_Y1cinaIB2GrzWhNobFoznf1x_xztg79gIiuiF6hbvlXm0sX-Ul55n38BM62rwA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64edDTdE78bQ5eu7VN2iTeZEw27YpgB7uNpk1EhFW0RfCvN0nbKYLgpZQGQnhJeD_6vu8DuKKSZkTkmROGInR0_J86TD8dpULCcsJxYBPFeRxOF-RuGSwbsLrFwkgpbfOZHJpX-y8_L7LKlMpGhvzNMJR1YDvQE7IarrUpqWDs6wPrNzhgz-Wj2XgyHj8GnHGTCvqGzNQ18h4_hFSsH7ntQdyuoG4feRlWpRhmn7_IGf-9xD0YfEP20MPGGe3Dllz3oddqNqDmCvehE6UfB5DcVGUxTyKjPn-NGo7VJ1QWqKahLiXSo8iK06u2qocMFAXFqWXqQFFT6ESG38pArd4HsLidJOOp0-grOM-ex0uHZlwSKrVFiCS5n6WCW4m-XDAXU8Vy7fqp6-U6BpRcuBIr7f6VEi7HmdBxAT6E7rpYyyNAnsCMeK6ifiBIxhULGE2JUOYE-DpJOoaBsdXqtabQWLVmOvnj-yXsTJN5tIpm8f0p7Jq9M_1ZHjmDbvlWyXMdCZTiwu7_F2_5rxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Conference+on+Engineering+of+Complex+Computer+Systems.+Online%29&rft.atitle=AutoMTLSpec%3A+Learning+to+Generate+MTL+Specifications+from+Natural+Language+Contracts&rft.au=Ge%2C+Ning&rft.au=Yang%2C+Jinwen&rft.au=Yu%2C+Tianyu&rft.au=Liu%2C+Wei&rft.date=2023-06-14&rft.pub=IEEE&rft.eissn=2770-8535&rft.spage=71&rft.epage=80&rft_id=info:doi/10.1109%2FICECCS59891.2023.00018&rft.externalDocID=10321954