An Improved Adaptive Velocity Update Particle Swarm Optimization Algorithm for Parameter Identification of Lithium-ion Battery
The accuracy of SOC estimation is placed on its model establishment of Lithium-ion batteries. Aiming to enhance the precision accuracy for parameter identification of lithium-ion batteries' equivalent circuit model (ECM), this article provides an improved adaptive velocity update PSO algorithm....
Saved in:
| Published in | 2023 3rd New Energy and Energy Storage System Control Summit Forum (NEESSC) pp. 519 - 523 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
26.09.2023
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/NEESSC59976.2023.10349304 |
Cover
| Abstract | The accuracy of SOC estimation is placed on its model establishment of Lithium-ion batteries. Aiming to enhance the precision accuracy for parameter identification of lithium-ion batteries' equivalent circuit model (ECM), this article provides an improved adaptive velocity update PSO algorithm. Traditional PSO algorithm is frequently utilized for identifying the parameters of the ECM offline. However, the selection of control parameters affects the performance and effectiveness of this algorithm. Thus, this article proposes an adaptive velocity update formula according to the fitness value. Finally, compared with the simulation results obtained by using the Recursive Least Square (RLS) method and standard PSO algorithm for parameter identification, the results illustrate that the simulated terminal voltage errors are reduced by 85mV, and 13mV, respectively, which verifies that the improved parameter identification method has good accuracy. |
|---|---|
| AbstractList | The accuracy of SOC estimation is placed on its model establishment of Lithium-ion batteries. Aiming to enhance the precision accuracy for parameter identification of lithium-ion batteries' equivalent circuit model (ECM), this article provides an improved adaptive velocity update PSO algorithm. Traditional PSO algorithm is frequently utilized for identifying the parameters of the ECM offline. However, the selection of control parameters affects the performance and effectiveness of this algorithm. Thus, this article proposes an adaptive velocity update formula according to the fitness value. Finally, compared with the simulation results obtained by using the Recursive Least Square (RLS) method and standard PSO algorithm for parameter identification, the results illustrate that the simulated terminal voltage errors are reduced by 85mV, and 13mV, respectively, which verifies that the improved parameter identification method has good accuracy. |
| Author | Xiang, Junfei Wu, Fan Wang, Shunli Liu, Donglei |
| Author_xml | – sequence: 1 givenname: Junfei surname: Xiang fullname: Xiang, Junfei organization: Hubei University of Technology,Energy Storage Device Energy Management Research Team,Wuhan,China – sequence: 2 givenname: Donglei surname: Liu fullname: Liu, Donglei organization: Southwest University of Science and Technology,New Energy Measurement and Control Research Center,Mianyang,China – sequence: 3 givenname: Shunli surname: Wang fullname: Wang, Shunli email: 497420789@qq.com organization: Southwest University of Science and Technology,New Energy Measurement and Control Research Center,Mianyang,China – sequence: 4 givenname: Fan surname: Wu fullname: Wu, Fan organization: Southwest University of Science and Technology,New Energy Measurement and Control Research Center,Mianyang,China |
| BookMark | eNo10EFLwzAcBfAIetC5b-AhfoDOpP-0TY51TFcYTpjzOtL2Hw00TYlxMg9-djump8eDH-_wrsh573sk5JazGedM3T0tFpvNPFOqyGcpS2HGGQgFTJyRqSqUhIwBUyDkJfkpe1q5Ifg9trRs9RDtHukrdr6x8UC3Q6sj0mcdom06pJsvHRxdj8rZbx2t72nZvflg47ujxoej1A4jBlq12EdrbHNi3tDVqOynS471XscRHa7JhdHdB07_ckK2D4uX-TJZrR-reblKLOcqJkUtWiVz3ebAJCDDLM9ZjXnDeSpUyoTOAETGOJdQo9RgVC2MTHktQRmewYTcnHYtIu6GYJ0Oh93_LfALqPJexw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/NEESSC59976.2023.10349304 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350309348 |
| EndPage | 523 |
| ExternalDocumentID | 10349304 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-7b4d986ad63083e0e5660be6c11249204a5334501183be8a3f9b4f821b839f153 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 10 09:28:10 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-7b4d986ad63083e0e5660be6c11249204a5334501183be8a3f9b4f821b839f153 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10349304 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Sept.-26 |
| PublicationDateYYYYMMDD | 2023-09-26 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 3rd New Energy and Energy Storage System Control Summit Forum (NEESSC) |
| PublicationTitleAbbrev | NEESSC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8487939 |
| Snippet | The accuracy of SOC estimation is placed on its model establishment of Lithium-ion batteries. Aiming to enhance the precision accuracy for parameter... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 519 |
| SubjectTerms | Adaptation models Integrated circuit modeling Lithium-ion batteries lithium-ion battery Mathematical models Parameter estimation parameter identification PSO Simulation State of charge |
| Title | An Improved Adaptive Velocity Update Particle Swarm Optimization Algorithm for Parameter Identification of Lithium-ion Battery |
| URI | https://ieeexplore.ieee.org/document/10349304 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60B_GkYkWtygpeE7N5bJNjKS1FtBa00lvZpxZNUkqC6MHf7kySKgqCt2wY2GU3mdfO9w0hF8xylUjBHO1pCFACFTnS154jlBDMV6FiFrHDN2M-moZXs2jWgNUrLIwxpio-My4-Vnf5OlclpsrgDw_CJED2z81uzGuw1hY5b3gzL8cDWHM_SsDCutgV3F3L_-icUhmO4Q4Zr6es60We3bKQrnr_xcb47zXtkvY3Ro9OvqzPHtkw2T756GW0ThMYTXtaLFGZ0QcDFgu8bTpdYnxPJ83nQu9exSqltyCVNnBM2nt5zFeL4iml4M2ipEixYIbWgF7bZPhobuk1SC3K1MFhzdL51ibT4eC-P3KaDgvOgrGkcLoy1EnMheYBuGLGM-DcedJwxbAnte-FApG6EaJTA2liEdhEhjb2mQS_yoKyPCCtLM_MIaERKAulQ-tFAoIgpmMGYTqXAbNK2lh5R6SNmzdf1iQa8_W-Hf_xvkO28QyxNMPnJ6RVrEpzCva_kGfVuX8CJ-qzLA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-ioD6pOPHbCL62Nm1S28cxNqZudeAmexv51KHtxmgRffBv99J2ioLgW1suNKTJ3e-u97tD6IKYUMaCE0d5ChyUQDJH-MpzuOSc-JJKYix3uJ-E3RG9GbNxTVYvuTBa6zL5TLv2svyXr2aysKEyOOEBjQNb_XONUUpZRddaR-d15czLpA2zbrEYbKxr-4K7yxE_eqeUpqOzhZLlS6uMkWe3yIUr33_VY_z3rLZR45ulhwdf9mcHrehsF300M1wFCrTCTcXnVp3hBw02C_A2Hs2th48H9YbB9698keI7kEprQiZuvjzOFtP8KcWAZ60kT23KDK4ovaaO8eGZwT2QmhapY2-rOp1vDTTqtIetrlP3WHCmhMS5cyWoiqOQqzAAMKY9DfDOEzqUxHal9j3KLVeXWX5qIHTEAxMLaiKfCEBWBtTlHlrNZpneR5iBupCKGo9xcIOIigg46qEIiJHCRNI7QA27eJN5VUZjsly3wz-en6GN7rDfm_Suk9sjtGm_p03U8MNjtJovCn0CaCAXp-Ue-AS0dLZ5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+New+Energy+and+Energy+Storage+System+Control+Summit+Forum+%28NEESSC%29&rft.atitle=An+Improved+Adaptive+Velocity+Update+Particle+Swarm+Optimization+Algorithm+for+Parameter+Identification+of+Lithium-ion+Battery&rft.au=Xiang%2C+Junfei&rft.au=Liu%2C+Donglei&rft.au=Wang%2C+Shunli&rft.au=Wu%2C+Fan&rft.date=2023-09-26&rft.pub=IEEE&rft.spage=519&rft.epage=523&rft_id=info:doi/10.1109%2FNEESSC59976.2023.10349304&rft.externalDocID=10349304 |