An Improved Adaptive Velocity Update Particle Swarm Optimization Algorithm for Parameter Identification of Lithium-ion Battery

The accuracy of SOC estimation is placed on its model establishment of Lithium-ion batteries. Aiming to enhance the precision accuracy for parameter identification of lithium-ion batteries' equivalent circuit model (ECM), this article provides an improved adaptive velocity update PSO algorithm....

Full description

Saved in:
Bibliographic Details
Published in2023 3rd New Energy and Energy Storage System Control Summit Forum (NEESSC) pp. 519 - 523
Main Authors Xiang, Junfei, Liu, Donglei, Wang, Shunli, Wu, Fan
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.09.2023
Subjects
Online AccessGet full text
DOI10.1109/NEESSC59976.2023.10349304

Cover

Abstract The accuracy of SOC estimation is placed on its model establishment of Lithium-ion batteries. Aiming to enhance the precision accuracy for parameter identification of lithium-ion batteries' equivalent circuit model (ECM), this article provides an improved adaptive velocity update PSO algorithm. Traditional PSO algorithm is frequently utilized for identifying the parameters of the ECM offline. However, the selection of control parameters affects the performance and effectiveness of this algorithm. Thus, this article proposes an adaptive velocity update formula according to the fitness value. Finally, compared with the simulation results obtained by using the Recursive Least Square (RLS) method and standard PSO algorithm for parameter identification, the results illustrate that the simulated terminal voltage errors are reduced by 85mV, and 13mV, respectively, which verifies that the improved parameter identification method has good accuracy.
AbstractList The accuracy of SOC estimation is placed on its model establishment of Lithium-ion batteries. Aiming to enhance the precision accuracy for parameter identification of lithium-ion batteries' equivalent circuit model (ECM), this article provides an improved adaptive velocity update PSO algorithm. Traditional PSO algorithm is frequently utilized for identifying the parameters of the ECM offline. However, the selection of control parameters affects the performance and effectiveness of this algorithm. Thus, this article proposes an adaptive velocity update formula according to the fitness value. Finally, compared with the simulation results obtained by using the Recursive Least Square (RLS) method and standard PSO algorithm for parameter identification, the results illustrate that the simulated terminal voltage errors are reduced by 85mV, and 13mV, respectively, which verifies that the improved parameter identification method has good accuracy.
Author Xiang, Junfei
Wu, Fan
Wang, Shunli
Liu, Donglei
Author_xml – sequence: 1
  givenname: Junfei
  surname: Xiang
  fullname: Xiang, Junfei
  organization: Hubei University of Technology,Energy Storage Device Energy Management Research Team,Wuhan,China
– sequence: 2
  givenname: Donglei
  surname: Liu
  fullname: Liu, Donglei
  organization: Southwest University of Science and Technology,New Energy Measurement and Control Research Center,Mianyang,China
– sequence: 3
  givenname: Shunli
  surname: Wang
  fullname: Wang, Shunli
  email: 497420789@qq.com
  organization: Southwest University of Science and Technology,New Energy Measurement and Control Research Center,Mianyang,China
– sequence: 4
  givenname: Fan
  surname: Wu
  fullname: Wu, Fan
  organization: Southwest University of Science and Technology,New Energy Measurement and Control Research Center,Mianyang,China
BookMark eNo10EFLwzAcBfAIetC5b-AhfoDOpP-0TY51TFcYTpjzOtL2Hw00TYlxMg9-djump8eDH-_wrsh573sk5JazGedM3T0tFpvNPFOqyGcpS2HGGQgFTJyRqSqUhIwBUyDkJfkpe1q5Ifg9trRs9RDtHukrdr6x8UC3Q6sj0mcdom06pJsvHRxdj8rZbx2t72nZvflg47ujxoej1A4jBlq12EdrbHNi3tDVqOynS471XscRHa7JhdHdB07_ckK2D4uX-TJZrR-reblKLOcqJkUtWiVz3ebAJCDDLM9ZjXnDeSpUyoTOAETGOJdQo9RgVC2MTHktQRmewYTcnHYtIu6GYJ0Oh93_LfALqPJexw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NEESSC59976.2023.10349304
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350309348
EndPage 523
ExternalDocumentID 10349304
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-7b4d986ad63083e0e5660be6c11249204a5334501183be8a3f9b4f821b839f153
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:10 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-7b4d986ad63083e0e5660be6c11249204a5334501183be8a3f9b4f821b839f153
PageCount 5
ParticipantIDs ieee_primary_10349304
PublicationCentury 2000
PublicationDate 2023-Sept.-26
PublicationDateYYYYMMDD 2023-09-26
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-26
  day: 26
PublicationDecade 2020
PublicationTitle 2023 3rd New Energy and Energy Storage System Control Summit Forum (NEESSC)
PublicationTitleAbbrev NEESSC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8487939
Snippet The accuracy of SOC estimation is placed on its model establishment of Lithium-ion batteries. Aiming to enhance the precision accuracy for parameter...
SourceID ieee
SourceType Publisher
StartPage 519
SubjectTerms Adaptation models
Integrated circuit modeling
Lithium-ion batteries
lithium-ion battery
Mathematical models
Parameter estimation
parameter identification
PSO
Simulation
State of charge
Title An Improved Adaptive Velocity Update Particle Swarm Optimization Algorithm for Parameter Identification of Lithium-ion Battery
URI https://ieeexplore.ieee.org/document/10349304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60B_GkYkWtygpeE7N5bJNjKS1FtBa00lvZpxZNUkqC6MHf7kySKgqCt2wY2GU3mdfO9w0hF8xylUjBHO1pCFACFTnS154jlBDMV6FiFrHDN2M-moZXs2jWgNUrLIwxpio-My4-Vnf5OlclpsrgDw_CJED2z81uzGuw1hY5b3gzL8cDWHM_SsDCutgV3F3L_-icUhmO4Q4Zr6es60We3bKQrnr_xcb47zXtkvY3Ro9OvqzPHtkw2T756GW0ThMYTXtaLFGZ0QcDFgu8bTpdYnxPJ83nQu9exSqltyCVNnBM2nt5zFeL4iml4M2ipEixYIbWgF7bZPhobuk1SC3K1MFhzdL51ibT4eC-P3KaDgvOgrGkcLoy1EnMheYBuGLGM-DcedJwxbAnte-FApG6EaJTA2liEdhEhjb2mQS_yoKyPCCtLM_MIaERKAulQ-tFAoIgpmMGYTqXAbNK2lh5R6SNmzdf1iQa8_W-Hf_xvkO28QyxNMPnJ6RVrEpzCva_kGfVuX8CJ-qzLA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-ioD6pOPHbCL62Nm1S28cxNqZudeAmexv51KHtxmgRffBv99J2ioLgW1suNKTJ3e-u97tD6IKYUMaCE0d5ChyUQDJH-MpzuOSc-JJKYix3uJ-E3RG9GbNxTVYvuTBa6zL5TLv2svyXr2aysKEyOOEBjQNb_XONUUpZRddaR-d15czLpA2zbrEYbKxr-4K7yxE_eqeUpqOzhZLlS6uMkWe3yIUr33_VY_z3rLZR45ulhwdf9mcHrehsF300M1wFCrTCTcXnVp3hBw02C_A2Hs2th48H9YbB9698keI7kEprQiZuvjzOFtP8KcWAZ60kT23KDK4ovaaO8eGZwT2QmhapY2-rOp1vDTTqtIetrlP3WHCmhMS5cyWoiqOQqzAAMKY9DfDOEzqUxHal9j3KLVeXWX5qIHTEAxMLaiKfCEBWBtTlHlrNZpneR5iBupCKGo9xcIOIigg46qEIiJHCRNI7QA27eJN5VUZjsly3wz-en6GN7rDfm_Suk9sjtGm_p03U8MNjtJovCn0CaCAXp-Ue-AS0dLZ5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+New+Energy+and+Energy+Storage+System+Control+Summit+Forum+%28NEESSC%29&rft.atitle=An+Improved+Adaptive+Velocity+Update+Particle+Swarm+Optimization+Algorithm+for+Parameter+Identification+of+Lithium-ion+Battery&rft.au=Xiang%2C+Junfei&rft.au=Liu%2C+Donglei&rft.au=Wang%2C+Shunli&rft.au=Wu%2C+Fan&rft.date=2023-09-26&rft.pub=IEEE&rft.spage=519&rft.epage=523&rft_id=info:doi/10.1109%2FNEESSC59976.2023.10349304&rft.externalDocID=10349304