Detection of ABS Events in Electronic Brake Systems using Machine Learning Algorithms

A novel approach for predicting Anti-lock Braking Systems (ABS) activation in electronic brake systems using Machine Learning (ML) algorithms is presented in this paper. ABS is a critical safety feature in modern vehicles, and early detection of function is essential for preventing accidents and ens...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Engineering Management Conference) pp. 1 - 6
Main Authors Maties, George, Fosalau, Cristian
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.03.2023
Subjects
Online AccessGet full text
ISSN2159-3604
DOI10.1109/ATEE58038.2023.10108131

Cover

Abstract A novel approach for predicting Anti-lock Braking Systems (ABS) activation in electronic brake systems using Machine Learning (ML) algorithms is presented in this paper. ABS is a critical safety feature in modern vehicles, and early detection of function is essential for preventing accidents and ensuring the safety of passengers. Traditional approaches for detecting ABS failures rely on hand-engineered features and heuristics, which can be time-consuming and prone to errors. In contrast, our proposed method ML algorithms is devoted to automatically learn relevant features from raw sensor data, allowing more accurate and efficient prediction of ABS function. In the paper, we evaluate the performance of some ML models on a dataset of hardware in the loop (HIL) braking events, demonstrating its superiority over traditional approaches. Our results show that the use of LSTM-based models is a promising direction for improving the safety and reliability of electronic brake systems.
AbstractList A novel approach for predicting Anti-lock Braking Systems (ABS) activation in electronic brake systems using Machine Learning (ML) algorithms is presented in this paper. ABS is a critical safety feature in modern vehicles, and early detection of function is essential for preventing accidents and ensuring the safety of passengers. Traditional approaches for detecting ABS failures rely on hand-engineered features and heuristics, which can be time-consuming and prone to errors. In contrast, our proposed method ML algorithms is devoted to automatically learn relevant features from raw sensor data, allowing more accurate and efficient prediction of ABS function. In the paper, we evaluate the performance of some ML models on a dataset of hardware in the loop (HIL) braking events, demonstrating its superiority over traditional approaches. Our results show that the use of LSTM-based models is a promising direction for improving the safety and reliability of electronic brake systems.
Author Fosalau, Cristian
Maties, George
Author_xml – sequence: 1
  givenname: George
  surname: Maties
  fullname: Maties, George
  email: georgematies19@gmail.com
  organization: "Gheorghe Asachi" Technical University of Iasi,Iasi,Romania
– sequence: 2
  givenname: Cristian
  surname: Fosalau
  fullname: Fosalau, Cristian
  email: cfosalau@tuiasi.ro
  organization: "Gheorghe Asachi" Technical University of Iasi,Iasi,Romania
BookMark eNo1kF1LwzAYhaMoOGf_gWD-QOv7Nk3bXHazfsDEi23XI03fbNEtlaYO9u-tqFcHngMPh3PNLnznibE7hAQR1H21qmtZgiiTFFKRICCUKPCMRapQpZAgBCqRn7NJilLFIofsikUhvAMAKqXyXEzY-oEGMoPrPO8sr2ZLXh_JD4E7z-v92PSdd4bPev1BfHkKAx0C_wrOb_mrNjvniS9I9_4HVPtt17thdwg37NLqfaDoL6ds_Viv5s_x4u3pZV4tYoeohjjXBtpxqG6AMlugLI1tVYbWgNZSS9NqyNsmBdkQUGptAYbKYgRgyahGTNntr9cR0eazdwfdnzb_T4hveDJVjA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ATEE58038.2023.10108131
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350331936
EISSN 2159-3604
EndPage 6
ExternalDocumentID 10108131
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-6ac0d350ab0e4f7158cfd941fc0aa5a5cda06db205be0e2ff70ce87b200fec9b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:19:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-6ac0d350ab0e4f7158cfd941fc0aa5a5cda06db205be0e2ff70ce87b200fec9b3
PageCount 6
ParticipantIDs ieee_primary_10108131
PublicationCentury 2000
PublicationDate 2023-March-23
PublicationDateYYYYMMDD 2023-03-23
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Engineering Management Conference)
PublicationTitleAbbrev ATEE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001999663
Score 1.8290899
Snippet A novel approach for predicting Anti-lock Braking Systems (ABS) activation in electronic brake systems using Machine Learning (ML) algorithms is presented in...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms ABS
automotive
Electric potential
electronic brake system
Feature extraction
hardware in the loop
Industries
Machine learning
Machine learning algorithms
Prediction algorithms
Safety
Title Detection of ABS Events in Electronic Brake Systems using Machine Learning Algorithms
URI https://ieeexplore.ieee.org/document/10108131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwGMaD7uRJxYnf5OC1NWmStjlu2jGEDcENdhtJ-maOaStbd_Gvt8m6DQXBWwgEQj54wpvf874I3euYUQ48DurTpAJOQQepNDwwtd5IwZQE40IDg2HcH_PniZg0ZnXvhQEAD59B6Jr-Lz8vzdqFyuobTmsFc67pwySNN2atfUDFP91Zw3BRIh86oywTKWGO4IpYuB39o46Kl5HeMRpuJ7ChRxbhutKh-fqVm_HfMzxB7b1jD7_stOgUHUBxhsZPUHnSqsClxZ3uK84c3bjC8wJnu_I3uLtUC8BN6nLsQPgZHnjGEnCTfnWGO--zcjmv3j5WbTTuZaPHftCUUQjmlMoqiJUhORNEaQLcJlSkxuaSU2uIUkIJkyviqkoRoYFAZG1CDKRJ3UEsGKnZOWoVZQEXCHPDtXDXOIk0Z4nV0qha31XKGTeREpeo7dZk-rnJlDHdLsfVH_3X6MhtjWO6InaDWtVyDbe1yFf6zm_uNwIupjY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwGMaDzIOeVJz4bQ5eW5MmWdvjph1TtyG4wW4jSd_MMW1l6y7-9TZZt6EgeAuBQMgHT3jze94XoVvVYJQDb3jlaZIep6C8KNbc06XexILJGLQNDfT6jc6QP43EqDKrOy8MADj4DHzbdH_5aa6XNlRW3nBaKph1Te8KzrlY2bW2IRX3eGcVxUVJfNccJImICLMMV8D89fgflVSckLQPUH89hRU_MvOXhfL116_sjP-e4yGqbz17-GWjRkdoB7JjNHyAwrFWGc4NbrZecWL5xgWeZjjZFMDBrbmcAa6Sl2OLwk9wz1GWgKsErBPcfJ_k82nx9rGoo2E7Gdx3vKqQgjelNC68htQkZYJIRYCbkIpImzTm1GgipZBCp5LYulJEKCAQGBMSDVFYdhADOlbsBNWyPINThLnmStiLHAaKs9CoWMtS4WXEGdeBFGeobtdk_LnKlTFeL8f5H_03aK8z6HXH3cf-8wXat9tkCa-AXaJaMV_CVSn5hbp2G_0N5ripgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Engineering+Management+Conference%29&rft.atitle=Detection+of+ABS+Events+in+Electronic+Brake+Systems+using+Machine+Learning+Algorithms&rft.au=Maties%2C+George&rft.au=Fosalau%2C+Cristian&rft.date=2023-03-23&rft.pub=IEEE&rft.eissn=2159-3604&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FATEE58038.2023.10108131&rft.externalDocID=10108131