Analysis of Different Variants of Relief Based Algorithms for Feature Selection in Medical Applications
This research paper explores the efficacy of Relief-based algorithms (RBAs) in the domain of medical data analysis, with a specific focus on lung cancer classification. Faced with the growing complexity of biological data and the need for computationally efficient yet sophisticated feature selection...
        Saved in:
      
    
          | Published in | 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) pp. 893 - 899 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        03.11.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/ICCCIS60361.2023.10425149 | 
Cover
| Abstract | This research paper explores the efficacy of Relief-based algorithms (RBAs) in the domain of medical data analysis, with a specific focus on lung cancer classification. Faced with the growing complexity of biological data and the need for computationally efficient yet sophisticated feature selection methods, RBAs emerge as a compelling solution. Various RBA variants, including ReliefF, Iterative Relief, I-Relief, SURF and MultiSURF, offer distinct perspectives on feature weighting and selection. Empirical analysis on lung cancer datasets reveals notable results, highlighting the impressive 0.80 accuracy rate achieved by I-Relief in classification tasks, thus confirming its effectiveness. These findings contribute to a deeper understanding of RBA capabilities and provide valuable insights for their future application and refinement within the domain of medical data analysis. | 
    
|---|---|
| AbstractList | This research paper explores the efficacy of Relief-based algorithms (RBAs) in the domain of medical data analysis, with a specific focus on lung cancer classification. Faced with the growing complexity of biological data and the need for computationally efficient yet sophisticated feature selection methods, RBAs emerge as a compelling solution. Various RBA variants, including ReliefF, Iterative Relief, I-Relief, SURF and MultiSURF, offer distinct perspectives on feature weighting and selection. Empirical analysis on lung cancer datasets reveals notable results, highlighting the impressive 0.80 accuracy rate achieved by I-Relief in classification tasks, thus confirming its effectiveness. These findings contribute to a deeper understanding of RBA capabilities and provide valuable insights for their future application and refinement within the domain of medical data analysis. | 
    
| Author | Choudhry, Mahipal Singh Kumar, Alok  | 
    
| Author_xml | – sequence: 1 givenname: Alok surname: Kumar fullname: Kumar, Alok email: engg.alok3@gmail.com organization: Delhi Technological University,Department of Electronics & Communication Engineering,New Delhi,India – sequence: 2 givenname: Mahipal Singh surname: Choudhry fullname: Choudhry, Mahipal Singh email: msc_1976@yahoo.com organization: Delhi Technological University,Department of Electronics & Communication Engineering,New Delhi,India  | 
    
| BookMark | eNo1j8tOwzAQRY0ECyj9AxbmAxI8sePHMgRaKhUhUWBbDcmkWHKdyAmL_j3ltbpXZ3Gkc8FOYx-JsWsQOYBwN6u6rlcbLaSGvBCFzEGoogTlTtjcGWdlKaTQAPac7aqI4TD6kfcdv_NdR4nixN8weYzTD32m4KnjtzhSy6uw65OfPvYj7_rEF4TTZyK-oUDN5PvIfeSP1PoGA6-GIRzPNx4v2VmHYaT5387Y6-L-pX7I1k_LVV2tMw_gpqyERpRCF6UyRtmiMcZq55xolUW0KEWrrdVaoGxKZQGwMKp1jUEN78dekjN29ev1RLQdkt9jOmz_--UXSqVU1g | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICCCIS60361.2023.10425149 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9798350306118 | 
    
| EndPage | 899 | 
    
| ExternalDocumentID | 10425149 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i119t-51c050625477482c77869990d48aa8a30d688660a3c54811a274d9c7a61b603e3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed May 01 11:49:14 EDT 2024 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i119t-51c050625477482c77869990d48aa8a30d688660a3c54811a274d9c7a61b603e3 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | ieee_primary_10425149 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-Nov.-3 | 
    
| PublicationDateYYYYMMDD | 2023-11-03 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-3 day: 03  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) | 
    
| PublicationTitleAbbrev | ICCCIS | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.8526801 | 
    
| Snippet | This research paper explores the efficacy of Relief-based algorithms (RBAs) in the domain of medical data analysis, with a specific focus on lung cancer... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 893 | 
    
| SubjectTerms | Classification algorithms Complexity Data analysis Feature extraction Feature Selection Feature weight Filter Filtering algorithms Lung cancer Medical services Relief Task analysis  | 
    
| Title | Analysis of Different Variants of Relief Based Algorithms for Feature Selection in Medical Applications | 
    
| URI | https://ieeexplore.ieee.org/document/10425149 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uD-KTihN_E8HX1Kbp0vRxVscmOIQ52dtI0nQOZyuzffGv95K1_gLBtxIKLXdp7rvefd8hdJEpn2qZZYSGmSFhJFKiJGdEiVhTpqIgdeWCuxEfTMLbaXdak9UdF8YY45rPjGcvXS0_LXRlf5XBFw47DCB9C7UiwddkrU10XutmXg6TJBmOOZzJNvELmNfc_2Nyigsc_W00ah657hd59qpSefr9lxrjv99pB3W-OHr4_jP67KINk--heaMxgosMX9ezT0r8CAmx7Xexq7YH2WT4CqJXinvLebFalE8vbxjAK7Z4sFoZPHbDccBjeJHjupSDe99K3R006d88JANSj1IgC0rjknSp9rs-5DohwD0RaKsaB9DQT0MhpZDMT7kQnPuSaUhhKJWQrKaxjiSnCgxq2D5q50VuDhDWENE45VxIQAYRC2IFINIyTRicuSbWh6hjrTR7XatlzBoDHf2xfoy2rLMcv4-doHa5qswpBPpSnTkHfwD7Oaec | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46QX1SceJvI_ja2jRp2j7O6th0G8I22dtI0nQOtZXZvvjXe-laf4HgWwmUlrs0913vvu8QukikQ5RIEouwRFvMD2JLCk4tGYSKUOm7cVku6A94Z8xuJ96kIquXXBitddl8pm1zWdby40wV5lcZfOGwwwDSr6I1jzHmLela6-i8Us687EZR1B1yOJVN6udSu77jx-yUMnS0t9CgfuiyY-TJLnJpq_dfeoz_fqtt1Pxi6eH7z_izg1Z0uotmtcoIzhJ8XU0_yfEDpMSm48Wsmi5kneAriF8xbj3PssU8f3x5wwBfsUGExULjYTkeB3yG5ymuijm49a3Y3UTj9s0o6ljVMAVrTkiYWx5RjudAtsMA8AWuMrpxAA6dmAVCBII6MQ8Czh1BFSQxhAhIV-NQ-YITCQbVdA810izV-wgriGmccB4IwAY-dUMJMNJwTSicujpUB6hprDR9XeplTGsDHf6xfoY2OqN-b9rrDu6O0KZxXMn2o8eokS8KfQJhP5enpbM_APRIquk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Computing%2C+Communication%2C+and+Intelligent+Systems+%28ICCCIS%29&rft.atitle=Analysis+of+Different+Variants+of+Relief+Based+Algorithms+for+Feature+Selection+in+Medical+Applications&rft.au=Kumar%2C+Alok&rft.au=Choudhry%2C+Mahipal+Singh&rft.date=2023-11-03&rft.pub=IEEE&rft.spage=893&rft.epage=899&rft_id=info:doi/10.1109%2FICCCIS60361.2023.10425149&rft.externalDocID=10425149 |