Analysis of Different Variants of Relief Based Algorithms for Feature Selection in Medical Applications

This research paper explores the efficacy of Relief-based algorithms (RBAs) in the domain of medical data analysis, with a specific focus on lung cancer classification. Faced with the growing complexity of biological data and the need for computationally efficient yet sophisticated feature selection...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) pp. 893 - 899
Main Authors Kumar, Alok, Choudhry, Mahipal Singh
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.11.2023
Subjects
Online AccessGet full text
DOI10.1109/ICCCIS60361.2023.10425149

Cover

Abstract This research paper explores the efficacy of Relief-based algorithms (RBAs) in the domain of medical data analysis, with a specific focus on lung cancer classification. Faced with the growing complexity of biological data and the need for computationally efficient yet sophisticated feature selection methods, RBAs emerge as a compelling solution. Various RBA variants, including ReliefF, Iterative Relief, I-Relief, SURF and MultiSURF, offer distinct perspectives on feature weighting and selection. Empirical analysis on lung cancer datasets reveals notable results, highlighting the impressive 0.80 accuracy rate achieved by I-Relief in classification tasks, thus confirming its effectiveness. These findings contribute to a deeper understanding of RBA capabilities and provide valuable insights for their future application and refinement within the domain of medical data analysis.
AbstractList This research paper explores the efficacy of Relief-based algorithms (RBAs) in the domain of medical data analysis, with a specific focus on lung cancer classification. Faced with the growing complexity of biological data and the need for computationally efficient yet sophisticated feature selection methods, RBAs emerge as a compelling solution. Various RBA variants, including ReliefF, Iterative Relief, I-Relief, SURF and MultiSURF, offer distinct perspectives on feature weighting and selection. Empirical analysis on lung cancer datasets reveals notable results, highlighting the impressive 0.80 accuracy rate achieved by I-Relief in classification tasks, thus confirming its effectiveness. These findings contribute to a deeper understanding of RBA capabilities and provide valuable insights for their future application and refinement within the domain of medical data analysis.
Author Choudhry, Mahipal Singh
Kumar, Alok
Author_xml – sequence: 1
  givenname: Alok
  surname: Kumar
  fullname: Kumar, Alok
  email: engg.alok3@gmail.com
  organization: Delhi Technological University,Department of Electronics & Communication Engineering,New Delhi,India
– sequence: 2
  givenname: Mahipal Singh
  surname: Choudhry
  fullname: Choudhry, Mahipal Singh
  email: msc_1976@yahoo.com
  organization: Delhi Technological University,Department of Electronics & Communication Engineering,New Delhi,India
BookMark eNo1j8tOwzAQRY0ECyj9AxbmAxI8sePHMgRaKhUhUWBbDcmkWHKdyAmL_j3ltbpXZ3Gkc8FOYx-JsWsQOYBwN6u6rlcbLaSGvBCFzEGoogTlTtjcGWdlKaTQAPac7aqI4TD6kfcdv_NdR4nixN8weYzTD32m4KnjtzhSy6uw65OfPvYj7_rEF4TTZyK-oUDN5PvIfeSP1PoGA6-GIRzPNx4v2VmHYaT5387Y6-L-pX7I1k_LVV2tMw_gpqyERpRCF6UyRtmiMcZq55xolUW0KEWrrdVaoGxKZQGwMKp1jUEN78dekjN29ev1RLQdkt9jOmz_--UXSqVU1g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCCIS60361.2023.10425149
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350306118
EndPage 899
ExternalDocumentID 10425149
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-51c050625477482c77869990d48aa8a30d688660a3c54811a274d9c7a61b603e3
IEDL.DBID RIE
IngestDate Wed May 01 11:49:14 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-51c050625477482c77869990d48aa8a30d688660a3c54811a274d9c7a61b603e3
PageCount 7
ParticipantIDs ieee_primary_10425149
PublicationCentury 2000
PublicationDate 2023-Nov.-3
PublicationDateYYYYMMDD 2023-11-03
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-3
  day: 03
PublicationDecade 2020
PublicationTitle 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)
PublicationTitleAbbrev ICCCIS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8526801
Snippet This research paper explores the efficacy of Relief-based algorithms (RBAs) in the domain of medical data analysis, with a specific focus on lung cancer...
SourceID ieee
SourceType Publisher
StartPage 893
SubjectTerms Classification algorithms
Complexity
Data analysis
Feature extraction
Feature Selection
Feature weight
Filter
Filtering algorithms
Lung cancer
Medical services
Relief
Task analysis
Title Analysis of Different Variants of Relief Based Algorithms for Feature Selection in Medical Applications
URI https://ieeexplore.ieee.org/document/10425149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uD-KTihN_E8HX1Kbp0vRxVscmOIQ52dtI0nQOZyuzffGv95K1_gLBtxIKLXdp7rvefd8hdJEpn2qZZYSGmSFhJFKiJGdEiVhTpqIgdeWCuxEfTMLbaXdak9UdF8YY45rPjGcvXS0_LXRlf5XBFw47DCB9C7UiwddkrU10XutmXg6TJBmOOZzJNvELmNfc_2Nyigsc_W00ah657hd59qpSefr9lxrjv99pB3W-OHr4_jP67KINk--heaMxgosMX9ezT0r8CAmx7Xexq7YH2WT4CqJXinvLebFalE8vbxjAK7Z4sFoZPHbDccBjeJHjupSDe99K3R006d88JANSj1IgC0rjknSp9rs-5DohwD0RaKsaB9DQT0MhpZDMT7kQnPuSaUhhKJWQrKaxjiSnCgxq2D5q50VuDhDWENE45VxIQAYRC2IFINIyTRicuSbWh6hjrTR7XatlzBoDHf2xfoy2rLMcv4-doHa5qswpBPpSnTkHfwD7Oaec
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46QX1SceJvI_ja2jRp2j7O6th0G8I22dtI0nQOtZXZvvjXe-laf4HgWwmUlrs0913vvu8QukikQ5RIEouwRFvMD2JLCk4tGYSKUOm7cVku6A94Z8xuJ96kIquXXBitddl8pm1zWdby40wV5lcZfOGwwwDSr6I1jzHmLela6-i8Us687EZR1B1yOJVN6udSu77jx-yUMnS0t9CgfuiyY-TJLnJpq_dfeoz_fqtt1Pxi6eH7z_izg1Z0uotmtcoIzhJ8XU0_yfEDpMSm48Wsmi5kneAriF8xbj3PssU8f3x5wwBfsUGExULjYTkeB3yG5ymuijm49a3Y3UTj9s0o6ljVMAVrTkiYWx5RjudAtsMA8AWuMrpxAA6dmAVCBII6MQ8Czh1BFSQxhAhIV-NQ-YITCQbVdA810izV-wgriGmccB4IwAY-dUMJMNJwTSicujpUB6hprDR9XeplTGsDHf6xfoY2OqN-b9rrDu6O0KZxXMn2o8eokS8KfQJhP5enpbM_APRIquk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Computing%2C+Communication%2C+and+Intelligent+Systems+%28ICCCIS%29&rft.atitle=Analysis+of+Different+Variants+of+Relief+Based+Algorithms+for+Feature+Selection+in+Medical+Applications&rft.au=Kumar%2C+Alok&rft.au=Choudhry%2C+Mahipal+Singh&rft.date=2023-11-03&rft.pub=IEEE&rft.spage=893&rft.epage=899&rft_id=info:doi/10.1109%2FICCCIS60361.2023.10425149&rft.externalDocID=10425149