Factorial Algorithms for Efficient Big Data Computing in AI and ML Models and their Implementation in Python
Factorial algorithms encompass a spectrum of computational methods, and their efficiency and practical viability depends on the specific techniques employed during implementation process in the programming language of choice. Among these methods, the iterative approach has demonstrated commendable e...
        Saved in:
      
    
          | Published in | 2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE) pp. 1 - 6 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        30.12.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/ICECCE61019.2023.10442073 | 
Cover
| Abstract | Factorial algorithms encompass a spectrum of computational methods, and their efficiency and practical viability depends on the specific techniques employed during implementation process in the programming language of choice. Among these methods, the iterative approach has demonstrated commendable efficiency. Nevertheless, the optimization of factorial computations can be taken to greater heights by harnessing advanced algorithms tailored to particular computational demands. In contrast to the recursive model, which exhibits conceptual simplicity, it is not immune to the drawback of repetitive calculations and large memory requirements. This redundancy can be effectively eliminated through the utilization of the iterative algorithm, thereby furnishing a swifter solution in the context of factorial calculations. The implementations of all cases in this paper are elaborated in such a way that both time complexity and memory requirements are taken into account for large values of the samples. | 
    
|---|---|
| AbstractList | Factorial algorithms encompass a spectrum of computational methods, and their efficiency and practical viability depends on the specific techniques employed during implementation process in the programming language of choice. Among these methods, the iterative approach has demonstrated commendable efficiency. Nevertheless, the optimization of factorial computations can be taken to greater heights by harnessing advanced algorithms tailored to particular computational demands. In contrast to the recursive model, which exhibits conceptual simplicity, it is not immune to the drawback of repetitive calculations and large memory requirements. This redundancy can be effectively eliminated through the utilization of the iterative algorithm, thereby furnishing a swifter solution in the context of factorial calculations. The implementations of all cases in this paper are elaborated in such a way that both time complexity and memory requirements are taken into account for large values of the samples. | 
    
| Author | Nair, Sowparnika V., Shynu S.  | 
    
| Author_xml | – sequence: 1 givenname: Sowparnika surname: Nair fullname: Nair, Sowparnika email: sowparnikanair@aiwq.in organization: DPS Bangalore,East Bangalore,India – sequence: 2 givenname: Shynu S. surname: V. fullname: V., Shynu S. email: shynunair@aiwq.in organization: AIWQ,Bangalore,India  | 
    
| BookMark | eNo1UM1OhDAYrIkedN038FAfAGwpUHpEZJWEjR70vPnoDzSBlkA97NuLf6eZSWYmmblBl847jdA9JTGlRDw0VV1VdU4JFXFCEhZTkqYJ4ewC7QUXBcsIy0Uu0ms0HkAGv1gYcTn2GwnDtGLjF1wbY6XVLuBH2-MnCIArP82fwboeW4fLBoNT-Njio1d6XH9UGLRdcDPNo562KATr3bf57RwG727RlYFx1fs_3KGPQ_1evUTt63NTlW1kKRUhSmWnmRGMFSQ3qdQyNR0QIXmRsaIwScZBgVAKcsMJ5Z3IlKFSQqG2nZJytkN3v71Wa32aFzvBcj79n8C-AETyWCE | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICECCE61019.2023.10442073 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9798350369694 | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | 10442073 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i119t-4cbe3f933806f4cec4fba09c785388f257ada9dda6f7017b95df1cca8d104c173 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed May 01 11:50:43 EDT 2024 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i119t-4cbe3f933806f4cec4fba09c785388f257ada9dda6f7017b95df1cca8d104c173 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_10442073 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-Dec.-30 | 
    
| PublicationDateYYYYMMDD | 2023-12-30 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec.-30 day: 30  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE) | 
    
| PublicationTitleAbbrev | ICECCE | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.8587545 | 
    
| Snippet | Factorial algorithms encompass a spectrum of computational methods, and their efficiency and practical viability depends on the specific techniques employed... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | AI and ML big data Computational efficiency Computational modeling Data models data science factorial algorithms GPU accelerated computing Iterative methods Memory management Python Time complexity  | 
    
| Title | Factorial Algorithms for Efficient Big Data Computing in AI and ML Models and their Implementation in Python | 
    
| URI | https://ieeexplore.ieee.org/document/10442073 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoB8QEiCLeMhKrQx7Ow2MJqVpEqw5U6lY5fpSKNkU0GeDXc3ZSEEhIbHbkOInvTnex7_sOoZskYjpWlBKIln1CQ6YJZyIhgQYFEJIpxc1-x3AU9Sf0YRpOG7C6xcIopWzymXJM057ly7WozFYZWDilPuhkC7XiJKrBWrvouuHNvB2kWZpmEA94BoHiB852_I_KKdZx9PbRaPvIOl_kxanK3BEfv9gY__1OB6jzjdHD4y_vc4h2VHGElj1bPgd0CneXc2iUz6sNhrgUZ5YqAqbCd4s5vuclx3VBB7gZLwrcHWBeSDx8xKY62nJje_YUAVsC4VWDUSrM4PG7YRzooEkve0r7pKmnQBaex0pCRa4CzeCn1I00FUpQnXOXiRhcdpJoMF4uOZOSRzoGQ81ZKLUHEk4kfKTw4uAYtYt1oU4Q9mUc-lyGxtdRiLmY1DENuWsSaXKd0FPUMUs1e60pM2bbVTr74_o52jMSswyK7gVql2-VugRvX-ZXVsqf49OqtQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UE_VJjRi_rYmvm2xrt_UR5wgoEB4g4Y10_VAiDCPjQf96r93QaGLiW7us3da7y93a-_0OoZs4ZDpShDgQLfsOoUw7nInYCTQogJBMKW72O3r9sD0iD2M6rsDqFgujlLLJZ8o1TXuWLxdiZbbKwMIJ8UEnN9EWJYTQEq61ja4r5szbTpImSQoRgWcwKH7grkf8qJ1iXUdrD_XXDy0zRl7cVZG54uMXH-O_32of1b9Renjw5X8O0IbKD9GsZQvogFbh5uwJGsXzfIkhMsWpJYuAqfDd9Anf84LjsqQDDMbTHDc7mOcS97rY1EebLW3PniNgSyE8r1BKubl58G44B-po1EqHSdupKio4U89jhUNEpgLN4Le0EWoilCA64w0mInDacazBfLnkTEoe6ghMNWNUag9kHEv4SOFFwRGq5YtcHSPsy4j6XFLj7QhEXUzqiFDeMKk0mY7JCaqbpZq8lqQZk_Uqnf5x_QrttIe97qTb6T-eoV0jPcun2DhHteJtpS7A9xfZpZX4JwKyrgI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Electrical%2C+Communication+and+Computer+Engineering+%28ICECCE%29&rft.atitle=Factorial+Algorithms+for+Efficient+Big+Data+Computing+in+AI+and+ML+Models+and+their+Implementation+in+Python&rft.au=Nair%2C+Sowparnika&rft.au=V.%2C+Shynu+S.&rft.date=2023-12-30&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICECCE61019.2023.10442073&rft.externalDocID=10442073 |