Factorial Algorithms for Efficient Big Data Computing in AI and ML Models and their Implementation in Python

Factorial algorithms encompass a spectrum of computational methods, and their efficiency and practical viability depends on the specific techniques employed during implementation process in the programming language of choice. Among these methods, the iterative approach has demonstrated commendable e...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE) pp. 1 - 6
Main Authors Nair, Sowparnika, V., Shynu S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 30.12.2023
Subjects
Online AccessGet full text
DOI10.1109/ICECCE61019.2023.10442073

Cover

Abstract Factorial algorithms encompass a spectrum of computational methods, and their efficiency and practical viability depends on the specific techniques employed during implementation process in the programming language of choice. Among these methods, the iterative approach has demonstrated commendable efficiency. Nevertheless, the optimization of factorial computations can be taken to greater heights by harnessing advanced algorithms tailored to particular computational demands. In contrast to the recursive model, which exhibits conceptual simplicity, it is not immune to the drawback of repetitive calculations and large memory requirements. This redundancy can be effectively eliminated through the utilization of the iterative algorithm, thereby furnishing a swifter solution in the context of factorial calculations. The implementations of all cases in this paper are elaborated in such a way that both time complexity and memory requirements are taken into account for large values of the samples.
AbstractList Factorial algorithms encompass a spectrum of computational methods, and their efficiency and practical viability depends on the specific techniques employed during implementation process in the programming language of choice. Among these methods, the iterative approach has demonstrated commendable efficiency. Nevertheless, the optimization of factorial computations can be taken to greater heights by harnessing advanced algorithms tailored to particular computational demands. In contrast to the recursive model, which exhibits conceptual simplicity, it is not immune to the drawback of repetitive calculations and large memory requirements. This redundancy can be effectively eliminated through the utilization of the iterative algorithm, thereby furnishing a swifter solution in the context of factorial calculations. The implementations of all cases in this paper are elaborated in such a way that both time complexity and memory requirements are taken into account for large values of the samples.
Author Nair, Sowparnika
V., Shynu S.
Author_xml – sequence: 1
  givenname: Sowparnika
  surname: Nair
  fullname: Nair, Sowparnika
  email: sowparnikanair@aiwq.in
  organization: DPS Bangalore,East Bangalore,India
– sequence: 2
  givenname: Shynu S.
  surname: V.
  fullname: V., Shynu S.
  email: shynunair@aiwq.in
  organization: AIWQ,Bangalore,India
BookMark eNo1UM1OhDAYrIkedN038FAfAGwpUHpEZJWEjR70vPnoDzSBlkA97NuLf6eZSWYmmblBl847jdA9JTGlRDw0VV1VdU4JFXFCEhZTkqYJ4ewC7QUXBcsIy0Uu0ms0HkAGv1gYcTn2GwnDtGLjF1wbY6XVLuBH2-MnCIArP82fwboeW4fLBoNT-Njio1d6XH9UGLRdcDPNo562KATr3bf57RwG727RlYFx1fs_3KGPQ_1evUTt63NTlW1kKRUhSmWnmRGMFSQ3qdQyNR0QIXmRsaIwScZBgVAKcsMJ5Z3IlKFSQqG2nZJytkN3v71Wa32aFzvBcj79n8C-AETyWCE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICECCE61019.2023.10442073
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350369694
EndPage 6
ExternalDocumentID 10442073
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-4cbe3f933806f4cec4fba09c785388f257ada9dda6f7017b95df1cca8d104c173
IEDL.DBID RIE
IngestDate Wed May 01 11:50:43 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-4cbe3f933806f4cec4fba09c785388f257ada9dda6f7017b95df1cca8d104c173
PageCount 6
ParticipantIDs ieee_primary_10442073
PublicationCentury 2000
PublicationDate 2023-Dec.-30
PublicationDateYYYYMMDD 2023-12-30
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-30
  day: 30
PublicationDecade 2020
PublicationTitle 2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE)
PublicationTitleAbbrev ICECCE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8587545
Snippet Factorial algorithms encompass a spectrum of computational methods, and their efficiency and practical viability depends on the specific techniques employed...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms AI and ML
big data
Computational efficiency
Computational modeling
Data models
data science
factorial algorithms
GPU accelerated computing
Iterative methods
Memory management
Python
Time complexity
Title Factorial Algorithms for Efficient Big Data Computing in AI and ML Models and their Implementation in Python
URI https://ieeexplore.ieee.org/document/10442073
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoB8QEiCLeMhKrQx7Ow2MJqVpEqw5U6lY5fpSKNkU0GeDXc3ZSEEhIbHbkOInvTnex7_sOoZskYjpWlBKIln1CQ6YJZyIhgQYFEJIpxc1-x3AU9Sf0YRpOG7C6xcIopWzymXJM057ly7WozFYZWDilPuhkC7XiJKrBWrvouuHNvB2kWZpmEA94BoHiB852_I_KKdZx9PbRaPvIOl_kxanK3BEfv9gY__1OB6jzjdHD4y_vc4h2VHGElj1bPgd0CneXc2iUz6sNhrgUZ5YqAqbCd4s5vuclx3VBB7gZLwrcHWBeSDx8xKY62nJje_YUAVsC4VWDUSrM4PG7YRzooEkve0r7pKmnQBaex0pCRa4CzeCn1I00FUpQnXOXiRhcdpJoMF4uOZOSRzoGQ81ZKLUHEk4kfKTw4uAYtYt1oU4Q9mUc-lyGxtdRiLmY1DENuWsSaXKd0FPUMUs1e60pM2bbVTr74_o52jMSswyK7gVql2-VugRvX-ZXVsqf49OqtQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UE_VJjRi_rYmvm2xrt_UR5wgoEB4g4Y10_VAiDCPjQf96r93QaGLiW7us3da7y93a-_0OoZs4ZDpShDgQLfsOoUw7nInYCTQogJBMKW72O3r9sD0iD2M6rsDqFgujlLLJZ8o1TXuWLxdiZbbKwMIJ8UEnN9EWJYTQEq61ja4r5szbTpImSQoRgWcwKH7grkf8qJ1iXUdrD_XXDy0zRl7cVZG54uMXH-O_32of1b9Renjw5X8O0IbKD9GsZQvogFbh5uwJGsXzfIkhMsWpJYuAqfDd9Anf84LjsqQDDMbTHDc7mOcS97rY1EebLW3PniNgSyE8r1BKubl58G44B-po1EqHSdupKio4U89jhUNEpgLN4Le0EWoilCA64w0mInDacazBfLnkTEoe6ghMNWNUag9kHEv4SOFFwRGq5YtcHSPsy4j6XFLj7QhEXUzqiFDeMKk0mY7JCaqbpZq8lqQZk_Uqnf5x_QrttIe97qTb6T-eoV0jPcun2DhHteJtpS7A9xfZpZX4JwKyrgI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Electrical%2C+Communication+and+Computer+Engineering+%28ICECCE%29&rft.atitle=Factorial+Algorithms+for+Efficient+Big+Data+Computing+in+AI+and+ML+Models+and+their+Implementation+in+Python&rft.au=Nair%2C+Sowparnika&rft.au=V.%2C+Shynu+S.&rft.date=2023-12-30&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICECCE61019.2023.10442073&rft.externalDocID=10442073