Parallelizing Non-Neural ML Algorithm for Edge-based Face Recognition on Parallel Ultra-Low Power (PULP) Cluster

The multi-core parallel ultra-low power (PULP) cluster architecture allows the IoT edge node to shift toward near-sensor computing. In this paper, non-neural Eigenfaces-based face recognition (FR) is examined on an octa-core PULP cluster. It is possible to achieve high accuracy in the Eigenfaces-bas...

Full description

Saved in:
Bibliographic Details
Published inMediterranean Conference on Embedded Computing (New Jersey. Online) pp. 1 - 8
Main Authors Nagar, Mitul Sudhirkumar, Kumar, Rahul, Engineer, Pinalkumar
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.06.2023
Subjects
Online AccessGet full text
ISSN2637-9511
DOI10.1109/MECO58584.2023.10154955

Cover

Abstract The multi-core parallel ultra-low power (PULP) cluster architecture allows the IoT edge node to shift toward near-sensor computing. In this paper, non-neural Eigenfaces-based face recognition (FR) is examined on an octa-core PULP cluster. It is possible to achieve high accuracy in the Eigenfaces-based algorithm without using a large data model. It is observed that the Eigenfaces-based face recognition algorithm achieved 93% accuracy on the PULP platform with a 4.55\times lesser model size compared to the state-of-the-art SqueezeNet1.1-based FR algorithm on GAP8 platform. Parallelization of Eigenfaces-based face recognition is done to achieve maximum speed-up on multi-core, reducing recognition time. Furthermore, DMA-based communication between the fabric controller and multi-core cluster reduces the recognition time by 50\times at the cost of a little degradation in speed-up on the multi-core. By adopting this technique, 165 faces per second are recognized with 93% accuracy on octa-core PULP cluster, which is 7.85\times faster than a single core RISC-V with DMA. Compared to the ARM Cortex-M7 architecture, the multi-core PULP cluster reduces recognition time by 89.89%. These results make the multi-core PULP cluster an efficient choice for Eigenfaces-based face recognition on the edge.
AbstractList The multi-core parallel ultra-low power (PULP) cluster architecture allows the IoT edge node to shift toward near-sensor computing. In this paper, non-neural Eigenfaces-based face recognition (FR) is examined on an octa-core PULP cluster. It is possible to achieve high accuracy in the Eigenfaces-based algorithm without using a large data model. It is observed that the Eigenfaces-based face recognition algorithm achieved 93% accuracy on the PULP platform with a 4.55\times lesser model size compared to the state-of-the-art SqueezeNet1.1-based FR algorithm on GAP8 platform. Parallelization of Eigenfaces-based face recognition is done to achieve maximum speed-up on multi-core, reducing recognition time. Furthermore, DMA-based communication between the fabric controller and multi-core cluster reduces the recognition time by 50\times at the cost of a little degradation in speed-up on the multi-core. By adopting this technique, 165 faces per second are recognized with 93% accuracy on octa-core PULP cluster, which is 7.85\times faster than a single core RISC-V with DMA. Compared to the ARM Cortex-M7 architecture, the multi-core PULP cluster reduces recognition time by 89.89%. These results make the multi-core PULP cluster an efficient choice for Eigenfaces-based face recognition on the edge.
Author Kumar, Rahul
Engineer, Pinalkumar
Nagar, Mitul Sudhirkumar
Author_xml – sequence: 1
  givenname: Mitul Sudhirkumar
  surname: Nagar
  fullname: Nagar, Mitul Sudhirkumar
  email: d19ec005@eced.svnit.ac.in
  organization: Sardar Valllabhbhai National Institute of Technology (SVNIT),Surat,India
– sequence: 2
  givenname: Rahul
  surname: Kumar
  fullname: Kumar, Rahul
  email: p20vl007@eced.svnit.ac.in
  organization: Sardar Valllabhbhai National Institute of Technology (SVNIT),Surat,India
– sequence: 3
  givenname: Pinalkumar
  surname: Engineer
  fullname: Engineer, Pinalkumar
  email: pje@eced.svnit.ac.in
  organization: Sardar Valllabhbhai National Institute of Technology (SVNIT),Surat,India
BookMark eNo1kNFLwzAYxKMoOOf-A8E86kNmvqZpksdRNhW6rYh7Hun6tUa6ZqQdQ_96Czo4OO4Ofg93S65a3yIhD8CnANw8L-fpWmqp42nEIzEFDjI2Ul6QiVFGC8lFFBngl2QUJUIxIwFuyKTrvjgfJgDFxYgcchts02Djflxb05Vv2QqPQ0WXGZ01tQ-u_9zTygc6L2tkhe2wpAu7Q_qOO1-3rne-pYPOILpp-mBZ5k809ycM9DHfZPkTTZtj12O4I9eVbTqc_PuYbBbzj_SVZeuXt3SWMQdgeiZ2WidVklRFqQSPCqG0tkpZrbnQhtuCqzIBEZcKSwGxTjBWshJDSoSxEYgxuf_jOkTcHoLb2_C9PZ8kfgE0cVw7
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MECO58584.2023.10154955
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350322910
EISSN 2637-9511
EndPage 8
ExternalDocumentID 10154955
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-3c886f66fbd7302b3788a77a8803890ab07d6134d7ed31486e475f37ed639a213
IEDL.DBID RIE
IngestDate Wed Aug 27 02:19:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-3c886f66fbd7302b3788a77a8803890ab07d6134d7ed31486e475f37ed639a213
PageCount 8
ParticipantIDs ieee_primary_10154955
PublicationCentury 2000
PublicationDate 2023-June-6
PublicationDateYYYYMMDD 2023-06-06
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-6
  day: 06
PublicationDecade 2020
PublicationTitle Mediterranean Conference on Embedded Computing (New Jersey. Online)
PublicationTitleAbbrev MECO
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211703
Score 1.8518866
Snippet The multi-core parallel ultra-low power (PULP) cluster architecture allows the IoT edge node to shift toward near-sensor computing. In this paper, non-neural...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Clustering algorithms
Costs
Eigenfaces
Face recognition
Inference algorithms
multi-core cluster
Multicore processing
PCA
Program processors
PULP
RISC-V processor
Training
Title Parallelizing Non-Neural ML Algorithm for Edge-based Face Recognition on Parallel Ultra-Low Power (PULP) Cluster
URI https://ieeexplore.ieee.org/document/10154955
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ734NfGbHDzoobVp2iQ7ytgYss0iFnYbSZPOYW3H6BD21_vSrfMDBKGHppAQkjzeL6-_93sI3YiEpMTAtcQAGHKCMKWO4iR0rDK7CBIdMmUD-sMR68fB4zgcb5LVq1wYY0xFPjOufa3-5esiWdpQGVi4FRQLwwZqcMHWyVrbgAr1bREVuuFwEa99P-x2ngANCxs68alb9_5RR6VyI719NKonsGaPvLnLUrnJ6pc2479neIBaXxl7ONr6okO0Y_IjtPdNbPAYzSO5sIVTstkK2nhU5JUyh8zwcIAfsmmxmJWv7xhALO7qqXGsf9O4J2Hk55plVOQYnnogHGflQjqD4gNHttgavo3iQXSHO9nSyi-0UNzrvnT6zqbegjMjpF06NBGCpYylSoPd-8pKzUvOJZg4wBpPKo9r8P6B5kZTuEYxE3DYXGgBzJE-oSeomRe5OUXYCxJKlE8UTdNA-Z7gWvqCeaotaMp9fYZadvEm87WkxqRet_M_vl-gXbuHFUeLXaJmuViaK0ADpbquTsEnwv6x4A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H9QXbxPv5sEHfehsmvSyRxkbU9tZZAPfRtKkc1jbUVqE_XpPunVeQBD60BQSQpLD-XL6ne8gdOVFJCYKriUKwJDB7JgawiW2oZXZPRZJ2xE6oB8MnP6IPbzYL8tk9SoXRilVkc9US79W__JlFpU6VAYWrgXFbHsdbdiMMXuRrrUKqVBLl1GhSxYXMdu3QbfzBHjY08ETi7bq_j8qqVSOpLeDBvUUFvyRt1ZZiFY0_6XO-O857qLmV84eDlfeaA-tqXQfbX-TGzxAs5DnunRKMp1DGw-ytNLm4AkOfHyXTLJ8Wry-Y4CxuCsnytAeTuIeh5Gfa55RlmJ46oHwKClybvjZBw51uTV8HY788AZ3klILMDTRqNcddvrGsuKCMSWkXRg08jwndpxYSLB8S2ixee66HIwcgI3JhelK8P9MukpSuEg5irmwvdACoMMtQg9RI81SdYSwySJKhEUEjWMmLNNzJbc8xxRtj8auJY9RUy_eeLYQ1RjX63byx_dLtNkfBv7Yvx88nqItvZ8VY8s5Q40iL9U5YINCXFQn4hNDdbUt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Mediterranean+Conference+on+Embedded+Computing+%28New+Jersey.+Online%29&rft.atitle=Parallelizing+Non-Neural+ML+Algorithm+for+Edge-based+Face+Recognition+on+Parallel+Ultra-Low+Power+%28PULP%29+Cluster&rft.au=Nagar%2C+Mitul+Sudhirkumar&rft.au=Kumar%2C+Rahul&rft.au=Engineer%2C+Pinalkumar&rft.date=2023-06-06&rft.pub=IEEE&rft.eissn=2637-9511&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FMECO58584.2023.10154955&rft.externalDocID=10154955