Parallelizing Non-Neural ML Algorithm for Edge-based Face Recognition on Parallel Ultra-Low Power (PULP) Cluster
The multi-core parallel ultra-low power (PULP) cluster architecture allows the IoT edge node to shift toward near-sensor computing. In this paper, non-neural Eigenfaces-based face recognition (FR) is examined on an octa-core PULP cluster. It is possible to achieve high accuracy in the Eigenfaces-bas...
Saved in:
| Published in | Mediterranean Conference on Embedded Computing (New Jersey. Online) pp. 1 - 8 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
06.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2637-9511 |
| DOI | 10.1109/MECO58584.2023.10154955 |
Cover
| Abstract | The multi-core parallel ultra-low power (PULP) cluster architecture allows the IoT edge node to shift toward near-sensor computing. In this paper, non-neural Eigenfaces-based face recognition (FR) is examined on an octa-core PULP cluster. It is possible to achieve high accuracy in the Eigenfaces-based algorithm without using a large data model. It is observed that the Eigenfaces-based face recognition algorithm achieved 93% accuracy on the PULP platform with a 4.55\times lesser model size compared to the state-of-the-art SqueezeNet1.1-based FR algorithm on GAP8 platform. Parallelization of Eigenfaces-based face recognition is done to achieve maximum speed-up on multi-core, reducing recognition time. Furthermore, DMA-based communication between the fabric controller and multi-core cluster reduces the recognition time by 50\times at the cost of a little degradation in speed-up on the multi-core. By adopting this technique, 165 faces per second are recognized with 93% accuracy on octa-core PULP cluster, which is 7.85\times faster than a single core RISC-V with DMA. Compared to the ARM Cortex-M7 architecture, the multi-core PULP cluster reduces recognition time by 89.89%. These results make the multi-core PULP cluster an efficient choice for Eigenfaces-based face recognition on the edge. |
|---|---|
| AbstractList | The multi-core parallel ultra-low power (PULP) cluster architecture allows the IoT edge node to shift toward near-sensor computing. In this paper, non-neural Eigenfaces-based face recognition (FR) is examined on an octa-core PULP cluster. It is possible to achieve high accuracy in the Eigenfaces-based algorithm without using a large data model. It is observed that the Eigenfaces-based face recognition algorithm achieved 93% accuracy on the PULP platform with a 4.55\times lesser model size compared to the state-of-the-art SqueezeNet1.1-based FR algorithm on GAP8 platform. Parallelization of Eigenfaces-based face recognition is done to achieve maximum speed-up on multi-core, reducing recognition time. Furthermore, DMA-based communication between the fabric controller and multi-core cluster reduces the recognition time by 50\times at the cost of a little degradation in speed-up on the multi-core. By adopting this technique, 165 faces per second are recognized with 93% accuracy on octa-core PULP cluster, which is 7.85\times faster than a single core RISC-V with DMA. Compared to the ARM Cortex-M7 architecture, the multi-core PULP cluster reduces recognition time by 89.89%. These results make the multi-core PULP cluster an efficient choice for Eigenfaces-based face recognition on the edge. |
| Author | Kumar, Rahul Engineer, Pinalkumar Nagar, Mitul Sudhirkumar |
| Author_xml | – sequence: 1 givenname: Mitul Sudhirkumar surname: Nagar fullname: Nagar, Mitul Sudhirkumar email: d19ec005@eced.svnit.ac.in organization: Sardar Valllabhbhai National Institute of Technology (SVNIT),Surat,India – sequence: 2 givenname: Rahul surname: Kumar fullname: Kumar, Rahul email: p20vl007@eced.svnit.ac.in organization: Sardar Valllabhbhai National Institute of Technology (SVNIT),Surat,India – sequence: 3 givenname: Pinalkumar surname: Engineer fullname: Engineer, Pinalkumar email: pje@eced.svnit.ac.in organization: Sardar Valllabhbhai National Institute of Technology (SVNIT),Surat,India |
| BookMark | eNo1kNFLwzAYxKMoOOf-A8E86kNmvqZpksdRNhW6rYh7Hun6tUa6ZqQdQ_96Czo4OO4Ofg93S65a3yIhD8CnANw8L-fpWmqp42nEIzEFDjI2Ul6QiVFGC8lFFBngl2QUJUIxIwFuyKTrvjgfJgDFxYgcchts02Djflxb05Vv2QqPQ0WXGZ01tQ-u_9zTygc6L2tkhe2wpAu7Q_qOO1-3rne-pYPOILpp-mBZ5k809ycM9DHfZPkTTZtj12O4I9eVbTqc_PuYbBbzj_SVZeuXt3SWMQdgeiZ2WidVklRFqQSPCqG0tkpZrbnQhtuCqzIBEZcKSwGxTjBWshJDSoSxEYgxuf_jOkTcHoLb2_C9PZ8kfgE0cVw7 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MECO58584.2023.10154955 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350322910 |
| EISSN | 2637-9511 |
| EndPage | 8 |
| ExternalDocumentID | 10154955 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-3c886f66fbd7302b3788a77a8803890ab07d6134d7ed31486e475f37ed639a213 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:19:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-3c886f66fbd7302b3788a77a8803890ab07d6134d7ed31486e475f37ed639a213 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10154955 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June-6 |
| PublicationDateYYYYMMDD | 2023-06-06 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | Mediterranean Conference on Embedded Computing (New Jersey. Online) |
| PublicationTitleAbbrev | MECO |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211703 |
| Score | 1.8518866 |
| Snippet | The multi-core parallel ultra-low power (PULP) cluster architecture allows the IoT edge node to shift toward near-sensor computing. In this paper, non-neural... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering algorithms Costs Eigenfaces Face recognition Inference algorithms multi-core cluster Multicore processing PCA Program processors PULP RISC-V processor Training |
| Title | Parallelizing Non-Neural ML Algorithm for Edge-based Face Recognition on Parallel Ultra-Low Power (PULP) Cluster |
| URI | https://ieeexplore.ieee.org/document/10154955 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ734NfGbHDzoobVp2iQ7ytgYss0iFnYbSZPOYW3H6BD21_vSrfMDBKGHppAQkjzeL6-_93sI3YiEpMTAtcQAGHKCMKWO4iR0rDK7CBIdMmUD-sMR68fB4zgcb5LVq1wYY0xFPjOufa3-5esiWdpQGVi4FRQLwwZqcMHWyVrbgAr1bREVuuFwEa99P-x2ngANCxs68alb9_5RR6VyI719NKonsGaPvLnLUrnJ6pc2479neIBaXxl7ONr6okO0Y_IjtPdNbPAYzSO5sIVTstkK2nhU5JUyh8zwcIAfsmmxmJWv7xhALO7qqXGsf9O4J2Hk55plVOQYnnogHGflQjqD4gNHttgavo3iQXSHO9nSyi-0UNzrvnT6zqbegjMjpF06NBGCpYylSoPd-8pKzUvOJZg4wBpPKo9r8P6B5kZTuEYxE3DYXGgBzJE-oSeomRe5OUXYCxJKlE8UTdNA-Z7gWvqCeaotaMp9fYZadvEm87WkxqRet_M_vl-gXbuHFUeLXaJmuViaK0ADpbquTsEnwv6x4A |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H9QXbxPv5sEHfehsmvSyRxkbU9tZZAPfRtKkc1jbUVqE_XpPunVeQBD60BQSQpLD-XL6ne8gdOVFJCYKriUKwJDB7JgawiW2oZXZPRZJ2xE6oB8MnP6IPbzYL8tk9SoXRilVkc9US79W__JlFpU6VAYWrgXFbHsdbdiMMXuRrrUKqVBLl1GhSxYXMdu3QbfzBHjY08ETi7bq_j8qqVSOpLeDBvUUFvyRt1ZZiFY0_6XO-O857qLmV84eDlfeaA-tqXQfbX-TGzxAs5DnunRKMp1DGw-ytNLm4AkOfHyXTLJ8Wry-Y4CxuCsnytAeTuIeh5Gfa55RlmJ46oHwKClybvjZBw51uTV8HY788AZ3klILMDTRqNcddvrGsuKCMSWkXRg08jwndpxYSLB8S2ixee66HIwcgI3JhelK8P9MukpSuEg5irmwvdACoMMtQg9RI81SdYSwySJKhEUEjWMmLNNzJbc8xxRtj8auJY9RUy_eeLYQ1RjX63byx_dLtNkfBv7Yvx88nqItvZ8VY8s5Q40iL9U5YINCXFQn4hNDdbUt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Mediterranean+Conference+on+Embedded+Computing+%28New+Jersey.+Online%29&rft.atitle=Parallelizing+Non-Neural+ML+Algorithm+for+Edge-based+Face+Recognition+on+Parallel+Ultra-Low+Power+%28PULP%29+Cluster&rft.au=Nagar%2C+Mitul+Sudhirkumar&rft.au=Kumar%2C+Rahul&rft.au=Engineer%2C+Pinalkumar&rft.date=2023-06-06&rft.pub=IEEE&rft.eissn=2637-9511&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FMECO58584.2023.10154955&rft.externalDocID=10154955 |