The Utilization of Machine Learning Algorithms in the Diagnosis of Heart Disease

According to data compiled by the World Health Organisation, heart disease and stroke account for 17.9 million annual deaths worldwide. Conditions including cardiac arrhythmias, stroke, and Cardiovascular rheumatism all belong to the larger category of heart and circulatory system illnesses. Stroke...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on IoT, Communication and Automation Technology (ICICAT) pp. 1 - 6
Main Authors Dutt, Ankit, Sharma, Swati
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.06.2023
Subjects
Online AccessGet full text
DOI10.1109/ICICAT57735.2023.10263723

Cover

Abstract According to data compiled by the World Health Organisation, heart disease and stroke account for 17.9 million annual deaths worldwide. Conditions including cardiac arrhythmias, stroke, and Cardiovascular rheumatism all belong to the larger category of heart and circulatory system illnesses. Stroke causes more than 80% of all fatalities from CVD, and it's the leading cause of mortality for those under 70 years old. In this study, we train and evaluate the k-nearest neighbour approach, the naive Bayes classifier, the stochastic gradient classifier, and the support vector machine using the Kaggle dataset of around 4238 individuals-to predict cardiovascular disease. Accuracy, Precision, recall, and f-score were only few of the criteria used to evaluate the various model's performance. Consequently, the stochastic gradient classifier model obtained a maximum accuracy of 93% in the heart condition dataset. The Jupyter notebook is the ideal tool for implementing Python code since it comes with a plethora of libraries and standard header files that guarantee flawless results.
AbstractList According to data compiled by the World Health Organisation, heart disease and stroke account for 17.9 million annual deaths worldwide. Conditions including cardiac arrhythmias, stroke, and Cardiovascular rheumatism all belong to the larger category of heart and circulatory system illnesses. Stroke causes more than 80% of all fatalities from CVD, and it's the leading cause of mortality for those under 70 years old. In this study, we train and evaluate the k-nearest neighbour approach, the naive Bayes classifier, the stochastic gradient classifier, and the support vector machine using the Kaggle dataset of around 4238 individuals-to predict cardiovascular disease. Accuracy, Precision, recall, and f-score were only few of the criteria used to evaluate the various model's performance. Consequently, the stochastic gradient classifier model obtained a maximum accuracy of 93% in the heart condition dataset. The Jupyter notebook is the ideal tool for implementing Python code since it comes with a plethora of libraries and standard header files that guarantee flawless results.
Author Sharma, Swati
Dutt, Ankit
Author_xml – sequence: 1
  givenname: Ankit
  surname: Dutt
  fullname: Dutt, Ankit
  email: ankit.2123mcse1004@kiet.edu
  organization: KIET Group of Institutions,Department of CSE,Ghaziabad,India
– sequence: 2
  givenname: Swati
  surname: Sharma
  fullname: Sharma, Swati
  email: swati.sharma@kiet.edu
  organization: KIET Group of Institutions,Department of CSE,Ghaziabad,India
BookMark eNo1j09PhDAUxGuiB133G3ioHwBs-4DS4wb_7CYYPbDnzQNeoQlbDO1FP70Y9TTJ5DeTmRt26WdPjN1LkUopzMOhOlS7Jtca8lQJBakUqgCt4IJtjTYl5AKEKpW4Zu_NSPwY3eS-MLrZ89nyV-xG54nXhIt3fuC7aZgXF8dz4M7zuCYeHQ5-Di788PuVi6sVCAPdsiuLU6Dtn27Y8fmpqfZJ_fayrqoTJ6WJCbRGygy61radsQJB6aLoixZLRGnJgIYus0L31oiMMtlDi4LKXpgMc4UdbNjdb68jotPH4s64fJ7-j8I3NMNOYA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICAT57735.2023.10263723
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350302820
EndPage 6
ExternalDocumentID 10263723
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-3b91143cbfbc9f0a32766d6ba8aa1fe9373c4f07df904e41d3ba0e8d094a52ac3
IEDL.DBID RIE
IngestDate Wed Oct 11 05:35:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-3b91143cbfbc9f0a32766d6ba8aa1fe9373c4f07df904e41d3ba0e8d094a52ac3
PageCount 6
ParticipantIDs ieee_primary_10263723
PublicationCentury 2000
PublicationDate 2023-June-23
PublicationDateYYYYMMDD 2023-06-23
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-23
  day: 23
PublicationDecade 2020
PublicationTitle 2023 International Conference on IoT, Communication and Automation Technology (ICICAT)
PublicationTitleAbbrev ICICAT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8461183
Snippet According to data compiled by the World Health Organisation, heart disease and stroke account for 17.9 million annual deaths worldwide. Conditions including...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Codes
Feature selection
Heart
Heart Disease
Libraries
Machine Learning
Machine learning algorithms
Naive Bayes methods
Prediction Model
Stochastic processes
Support vector machine
Support vector machines
Title The Utilization of Machine Learning Algorithms in the Diagnosis of Heart Disease
URI https://ieeexplore.ieee.org/document/10263723
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3EbzuunnsZnOUaqlCSw8Weit51sW6K-324q83yW4VBcFbGAYSZkhmknzfDAA3BCurs0RHiAkVUZLpiHOjIyGkZlRmOgv8itE4G07p0yydtWT1wIUxxgTwmYn9MPzl60pt_FOZ2-E4IwyTDuiwPGvIWrvguq2befvY9-TblDGSxr4reLzV_9E5JQSOwT4Yb6ds8CKv8aaWsfr4VY3x32s6AL1vjh6cfEWfQ7BjyiMwcV6H07pYtuxKWFk4CnBJA9tKqgt4t1xUq6J-eVvDooQuAYT3Dd6uWHv9odOrnSh83PTAdPDw3B9Gbc-EqECI1xGR7vSiREkrFbeJIJhlzuBS5EIga1wyQhS1CdOWJ9RQpIkUicm1u-WJFAtFjkG3rEpzAiBLBKIpNylXLtQhI4xkubUIq0RwbNkp6HlzzN-bshjzrSXO_pCfgz3vFY-zwuQCdOvVxly6iF7Lq-DJT6LGomo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aQT2pWPFtBK-77ibZTXOUamm1LT200FvJUxfrrrTbi7_eJLtVFARvYUhImCGZSfJ9MwDcYCSNSiMVxJTLgOBUBYxpFXAuFCUiVannVwyGaXdCHqfJtCarey6M1tqDz3Tomv4vXxVy5Z7K7A5HKaYIb4KthBCSVHStbXBdZ8687bUd_TahFCehqwserkf8qJ3iXUdnDwzXk1aIkddwVYpQfvzKx_jvVe2D5jdLD46-_M8B2ND5IRhZu8NJmc1rfiUsDBx4wKSGdS7VZ3g3fy4WWfnytoRZDm0ICO8rxF22dP27tl9pRf7rpgkmnYdxuxvUVROCLI5ZGWBhzy-CpTBCMhNxjGhqVS54i_PYaBuOYElMRJVhEdEkVljwSLeUvefxBHGJj0AjL3J9DCCNeEwSphMmrbOLNdeCtoyJkYw4Q4aegKZTx-y9SowxW2vi9A_5Fdjpjgf9Wb83fDoDu85CDnWF8DlolIuVvrD-vRSX3qqfVECltw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+IoT%2C+Communication+and+Automation+Technology+%28ICICAT%29&rft.atitle=The+Utilization+of+Machine+Learning+Algorithms+in+the+Diagnosis+of+Heart+Disease&rft.au=Dutt%2C+Ankit&rft.au=Sharma%2C+Swati&rft.date=2023-06-23&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICICAT57735.2023.10263723&rft.externalDocID=10263723