Online modeling method of generator based on K-means clustering algorithm and BP neural network

This paper proposes a novel method for online modeling of generators in absorption refrigeration systems, which utilizes a combination of the K-mean clustering algorithm and BP neural network. Firstly, the method analyzes the working principle of the generator in the refrigeration system and establi...

Full description

Saved in:
Bibliographic Details
Published inIEEE Conference on Industrial Electronics and Applications (Online) pp. 1857 - 1862
Main Authors Ma, Haoxiang, Ding, Xudong, Sun, Hao, Yang, Dongrun, Sun, Mei, Zhao, Xingkai
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.08.2023
Subjects
Online AccessGet full text
ISSN2158-2297
DOI10.1109/ICIEA58696.2023.10241454

Cover

Abstract This paper proposes a novel method for online modeling of generators in absorption refrigeration systems, which utilizes a combination of the K-mean clustering algorithm and BP neural network. Firstly, the method analyzes the working principle of the generator in the refrigeration system and establishes an input and output structure for the generator model. Then, the K-mean clustering algorithm and particle swarm optimization algorithm are employed to cluster and filter the experimental data, with the clustering centers being used to replace the original data. Subsequently, the BP neural network modeling method is employed to obtain the model parameters, which are substituted into the model to predict the heat exchange of the generator, and compared with the measured data. Moreover, the proposed method utilizes the parameters of an offline model as the initial parameters of the online model, and then re-identifies and clusters the model parameters to obtain the BPNN model of the generator. The experimental results demonstrate that the proposed modeling method can accurately predict the heat exchange of the generator under a small range of operating conditions. Furthermore, the online model identification method improves the accuracy of the model and reduces the scope of experimental data collection required for identifying the model parameters.
AbstractList This paper proposes a novel method for online modeling of generators in absorption refrigeration systems, which utilizes a combination of the K-mean clustering algorithm and BP neural network. Firstly, the method analyzes the working principle of the generator in the refrigeration system and establishes an input and output structure for the generator model. Then, the K-mean clustering algorithm and particle swarm optimization algorithm are employed to cluster and filter the experimental data, with the clustering centers being used to replace the original data. Subsequently, the BP neural network modeling method is employed to obtain the model parameters, which are substituted into the model to predict the heat exchange of the generator, and compared with the measured data. Moreover, the proposed method utilizes the parameters of an offline model as the initial parameters of the online model, and then re-identifies and clusters the model parameters to obtain the BPNN model of the generator. The experimental results demonstrate that the proposed modeling method can accurately predict the heat exchange of the generator under a small range of operating conditions. Furthermore, the online model identification method improves the accuracy of the model and reduces the scope of experimental data collection required for identifying the model parameters.
Author Ma, Haoxiang
Ding, Xudong
Sun, Mei
Zhao, Xingkai
Yang, Dongrun
Sun, Hao
Author_xml – sequence: 1
  givenname: Haoxiang
  surname: Ma
  fullname: Ma, Haoxiang
  email: 58242853@qq.com
  organization: Shandong Jianzhu University,School of Information and Electrical Engineering,Jinan,China
– sequence: 2
  givenname: Xudong
  surname: Ding
  fullname: Ding, Xudong
  email: xdding@sdjzu.edu.cn
  organization: Shandong Jianzhu University,School of Information and Electrical Engineering,Jinan,China
– sequence: 3
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  organization: Shandong Jianzhu University,School of Information and Electrical Engineering,Jinan,China
– sequence: 4
  givenname: Dongrun
  surname: Yang
  fullname: Yang, Dongrun
  email: 32639604@qq.com
  organization: Jinan Zhongjian Architectural Design Institute,Second Design Branch,Jinan,China
– sequence: 5
  givenname: Mei
  surname: Sun
  fullname: Sun, Mei
  organization: Shandong Jianzhu University,School of Information and Electrical Engineering,Jinan,China
– sequence: 6
  givenname: Xingkai
  surname: Zhao
  fullname: Zhao, Xingkai
  organization: Shandong Jianzhu University,School of Information and Electrical Engineering,Jinan,China
BookMark eNo1UMFOwzAUCwgkxtgfcMgPtOS9tE1yHNMYE5PGAc5V2rxuhTZBaSfE31MEnGzZliX7ml344IkxDiIFEOZuu9qul7kuTJGiQJmCwAyyPDtjC6OMlrmQgCjgnM0Qcp0gGnXFFsPwJsRkKaUlzFi5913riffB0UQOvKfxGBwPDT-Qp2jHEHllB5okz5-SnqwfeN2dhpHiT952hxDb8dhz6x2_f-aeTtF2E4yfIb7fsMvGdgMt_nDOXh_WL6vHZLffbFfLXdICmDGRhVR1VaNqqoJIZFkOOkdH04LGFa421jRE1jWAVml0qFFrLQtCK5UWIOfs9re3JaLyI7a9jV_l_yfyG-UlWLc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIEA58696.2023.10241454
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350312201
EISSN 2158-2297
EndPage 1862
ExternalDocumentID 10241454
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-3637cbc27fb6ee04451852de122fd6dc9a9feeadf12a782d28288836e2a378013
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-3637cbc27fb6ee04451852de122fd6dc9a9feeadf12a782d28288836e2a378013
PageCount 6
ParticipantIDs ieee_primary_10241454
PublicationCentury 2000
PublicationDate 2023-Aug.-18
PublicationDateYYYYMMDD 2023-08-18
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-18
  day: 18
PublicationDecade 2020
PublicationTitle IEEE Conference on Industrial Electronics and Applications (Online)
PublicationTitleAbbrev ICIEA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177831
Score 1.8522092
Snippet This paper proposes a novel method for online modeling of generators in absorption refrigeration systems, which utilizes a combination of the K-mean clustering...
SourceID ieee
SourceType Publisher
StartPage 1857
SubjectTerms BP neural network
Clustering algorithms
Data collection
Filtering algorithms
generator
Heating systems
K-mean clustering algorithm
Neural networks
online modeling
Prediction algorithms
Predictive models
Title Online modeling method of generator based on K-means clustering algorithm and BP neural network
URI https://ieeexplore.ieee.org/document/10241454
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ734NfGbHLy2rkmTJkcdG05x7OBgt5E2L3O4tTLai3-9SbrODxA8pTxSCHkJv-Tl934PoRvKhYSu3Uh2ubAgThUJUlBRoIlmkjBI0sy96D6P-MMkfpyy6SZZ3efCAIAnn0HoPv1bvi6yyoXK7A63eBOzuIVaieB1stY2oGKBMBE0atg6XXk77A37d0xw6agIhIbN7z8KqXgcGeyjUTOCmj7yFlZlGmYfv8QZ_z3EA9T5StnD4y0YHaIdyI_Q3je1wWM0q2VFsS9-Yy24rh6NC4PnXnzaXr-xQzVryvFTsAILYzhbVk5LwfVXy3mxXpSvK6xyje_H2IlhqqVtPJW8gyaD_kvvIdjUVwgWUSTLgHKaZGlGEpNygK6TKhOMaIgIMZrrTCppwK40ExFlDxLa3c6EoByIoolFNnqC2nmRwynCpuuVzhiYRMfWEcrImGsaa0lsT8rOUMfN1ey9ltCYNdN0_of9Au06l7ngbSQuUbtcV3Bl0b9Mr73XPwFcP64H
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNaLwk8RGqVi1d1EMr9VY58aRUtAmqkgtfj-00ZZGQOCUaWZZlj_Xs8Zs3CD1QPxTQ0BtJuwt3WCSJE4H0HEUUF4RDEMXmRXcw9DsT9jLl002yus2FAQBLPgPX_Nq3fJXFhQmV6R2u8YZxtov2OGOMl-la25CKhsIgpF7F12mIx26z23rioS8MGYFQt-rgRykViyTtIzSsxlASSN7cIo_c-OOXPOO_B3mM6l9Je3i0haMTtAPpKTr8pjd4hmalsCi25W-0BZf1o3GW4LmVn9YXcGxwTZtS3HNWoIEMx8vCqCmY9nI5z9aL_HWFZarw8wgbOUy51B9LJq-jSbs1bnacTYUFZ-F5IneoT4M4ikmQRD5Aw4iVhZwo8AhJlK9iIUUC2tcSj0h9lFDmfhaG1AciaaCxjZ6jWpqlcIFw0rBaZxySQDG9EDIRzFeUKUF0S8ovUd3M1ey9FNGYVdN09Yf9Hu13xoP-rN8d9q7RgVk-E8r1whtUy9cF3OqzQB7dWQ_4BKhbsVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Conference+on+Industrial+Electronics+and+Applications+%28Online%29&rft.atitle=Online+modeling+method+of+generator+based+on+K-means+clustering+algorithm+and+BP+neural+network&rft.au=Ma%2C+Haoxiang&rft.au=Ding%2C+Xudong&rft.au=Sun%2C+Hao&rft.au=Yang%2C+Dongrun&rft.date=2023-08-18&rft.pub=IEEE&rft.eissn=2158-2297&rft.spage=1857&rft.epage=1862&rft_id=info:doi/10.1109%2FICIEA58696.2023.10241454&rft.externalDocID=10241454