PSO-SVM Based Algorithm for Customer Churn Prediction in the Banking Industry

Customer churn is a major concern for the banking industry and there are many methods being investigated to predict whether a customer would potentially churn. To solve this problem, one such approach is the use of machine learning techniques combined with one of the widely used models Support Vecto...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE 6th International Conference on Big Data and Artificial Intelligence (BDAI) pp. 220 - 225
Main Authors Ponnusamy, Raja Rajeswari A-P, Rana, Muhammad Ehsan, Manickavasagam, Sarnesh A-L, Hameed, Vazeerudeen Abdul
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.07.2023
Subjects
Online AccessGet full text
DOI10.1109/BDAI59165.2023.10257097

Cover

Abstract Customer churn is a major concern for the banking industry and there are many methods being investigated to predict whether a customer would potentially churn. To solve this problem, one such approach is the use of machine learning techniques combined with one of the widely used models Support Vector Machine (SVM). However, SVM required the right set of hyperparameters to function optimally. This paper proposes the use of Particle Swarm Optimization (PSO) to find the optimal hyperparameters for the SVM model. The data used is obtained from Kaggle and several preprocessing techniques have been deployed to prepare the data. The results are compared with existing models that have used the same dataset. Based on the results, the proposed model obtained a significantly higher accuracy than existing SVM-based models.
AbstractList Customer churn is a major concern for the banking industry and there are many methods being investigated to predict whether a customer would potentially churn. To solve this problem, one such approach is the use of machine learning techniques combined with one of the widely used models Support Vector Machine (SVM). However, SVM required the right set of hyperparameters to function optimally. This paper proposes the use of Particle Swarm Optimization (PSO) to find the optimal hyperparameters for the SVM model. The data used is obtained from Kaggle and several preprocessing techniques have been deployed to prepare the data. The results are compared with existing models that have used the same dataset. Based on the results, the proposed model obtained a significantly higher accuracy than existing SVM-based models.
Author Rana, Muhammad Ehsan
Hameed, Vazeerudeen Abdul
Manickavasagam, Sarnesh A-L
Ponnusamy, Raja Rajeswari A-P
Author_xml – sequence: 1
  givenname: Raja Rajeswari A-P
  surname: Ponnusamy
  fullname: Ponnusamy, Raja Rajeswari A-P
  email: dr.raja.rajeswari@apu.edu.my
  organization: Asia Pacific University of Technology and Innovation,School of Computing,Kuala Lumpur,Malaysia
– sequence: 2
  givenname: Muhammad Ehsan
  surname: Rana
  fullname: Rana, Muhammad Ehsan
  email: muhd_ehsanrana@apu.edu.my
  organization: Asia Pacific University of Technology and Innovation,School of Computing,Kuala Lumpur,Malaysia
– sequence: 3
  givenname: Sarnesh A-L
  surname: Manickavasagam
  fullname: Manickavasagam, Sarnesh A-L
  email: tP068557@mail.apu.edu.my
  organization: Asia Pacific University of Technology and Innovation,School of Computing,Kuala Lumpur,Malaysia
– sequence: 4
  givenname: Vazeerudeen Abdul
  surname: Hameed
  fullname: Hameed, Vazeerudeen Abdul
  email: vazeerudeen@gmail.com
  organization: Asia Pacific University of Technology and Innovation,School of Computing,Kuala Lumpur,Malaysia
BookMark eNo1j0tOwzAYhI1EF1B6AyR8gQQ_YjtepgFKpFat1MK2SuzfjUXjICdd9PZEAlYzi_lGM_foNvQBEHqiJKWU6OflS1EJTaVIGWE8pYQJRbS6QQutdM4F4YRLqe7QZrffJvvPDV7WA1hcnE999GPbYddHXF6Gse9gMu0lBryLYL0ZfR-wD3hsYYLClw8nXAU7ReP1Ac1cfR5g8adz9PH2eijfk_V2VZXFOvGU6jFhLncARlsjGy0Fl07rxjQKLAGWGZ5lOcsdoZlo7DTTASPKuJqZXAsjec3n6PG31wPA8Tv6ro7X4_9L_gMz_UxZ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BDAI59165.2023.10257097
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350303667
EndPage 225
ExternalDocumentID 10257097
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-2f8feec9dc6b96536f99bcb7ed0e24c344828f0145bd366fe207cfa2c895c63a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-2f8feec9dc6b96536f99bcb7ed0e24c344828f0145bd366fe207cfa2c895c63a3
PageCount 6
ParticipantIDs ieee_primary_10257097
PublicationCentury 2000
PublicationDate 2023-July-7
PublicationDateYYYYMMDD 2023-07-07
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-7
  day: 07
PublicationDecade 2020
PublicationTitle 2023 IEEE 6th International Conference on Big Data and Artificial Intelligence (BDAI)
PublicationTitleAbbrev BDAI
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8405619
Snippet Customer churn is a major concern for the banking industry and there are many methods being investigated to predict whether a customer would potentially churn....
SourceID ieee
SourceType Publisher
StartPage 220
SubjectTerms Banking
Big Data
Classification
Data Mining
Industries
Machine learning
Machine learning algorithms
Particle Swarm Optimization
Prediction algorithms
Support Vector Machine (VM)
Support vector machines
Title PSO-SVM Based Algorithm for Customer Churn Prediction in the Banking Industry
URI https://ieeexplore.ieee.org/document/10257097
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6-pbdOmzXGbjilsDuZkt9EkL27oNpH2oH-9L1mnKAjeQmhIyWv6fS_vvXyEXKLLEXIoOFNc5AwRL2UySTgDyTX-FY1R_sCtPxC9cXI3SSd1sbqvhQEAn3wGgWv6WL5Z6codleEOd5prMtsm21ku1sVadc5WFMqr9nXrNkW6kwZOEzzYPP1DN8XDRneXDDYTrrNFnoOqVIH--HUX47_faI80vyv06PALe_bJFiwPSH84umejxz5tIzQZ2np5WqHrP1tQJKa0UyHNWwA2Zvj14GAXoXFWofMlRRaIg7yKAq3FPN6bZNy9eej0WC2XwOZRJEsW29wCaGm0UFKkXFgplVYZmBDiRHN0xOLcujCiMlwIC3GYaVvEOpepFrzgh6SxXC3hiFCZxoC8C4qUm8TKUMZWRkYUxm1XJbNj0nRrMX1d34gx3SzDyR_9p2THmcSnuWZnpFG-VXCOYF6qC2_ET_6bnuY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pSI8bf9uB1c1vXjh4BJaAMSQDDjaztmxBlGLMd9K_3dYBGExNvTbOmS9-673t97_Uj5ApdDo9BwhzFRM1BxOOODEPmgGQa_4rGqPLALe6J9ii8G_Pxqli9rIUBgDL5DFzbLGP5ZqELe1SGO9xqrslok2zxMAz5slxrlbXle_K6cVPvcCQ83LWq4O76-R_KKSVwtHZJbz3lMl_k2S1y5eqPX7cx_vud9kj1u0aP9r_QZ59sQHZA4v7gwRk8xrSB4GRo_eVpgc7_dE6RmtJmgURvDtiY4veDg22MxtqFzjKKPBAHlToKdCXn8V4lo9btsNl2VoIJzsz3Ze4EaS0F0NJooaTgTKRSKq0iMB4EoWboigW11AYSlWFCpBB4kU6TQNck14Il7JBUskUGR4RKHgAyL0g4M2EqPRmk0jciMXbDKhkdk6pdi8nr8k6MyXoZTv7ovyTb7WHcnXQ7vftTsmPNUya9Rmekkr8VcI7QnquL0qCfgVCiMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+6th+International+Conference+on+Big+Data+and+Artificial+Intelligence+%28BDAI%29&rft.atitle=PSO-SVM+Based+Algorithm+for+Customer+Churn+Prediction+in+the+Banking+Industry&rft.au=Ponnusamy%2C+Raja+Rajeswari+A-P&rft.au=Rana%2C+Muhammad+Ehsan&rft.au=Manickavasagam%2C+Sarnesh+A-L&rft.au=Hameed%2C+Vazeerudeen+Abdul&rft.date=2023-07-07&rft.pub=IEEE&rft.spage=220&rft.epage=225&rft_id=info:doi/10.1109%2FBDAI59165.2023.10257097&rft.externalDocID=10257097