Multi-objective Particle Swarm Optimization Algorithm for Feeder Capacity Planning of Distribution Network Considering Dynamic Load
The optimization proportion of distribution network feeder capacity cannot reach the expected standard, so this paper proposes a multi-objective Particle swarm optimization algorithm for distribution network feeder capacity considering dynamic load. The multi-objective method is used to expand the p...
Saved in:
| Published in | 2023 3rd International Conference on New Energy and Power Engineering (ICNEPE) pp. 773 - 776 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
24.11.2023
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ICNEPE60694.2023.10429172 |
Cover
| Abstract | The optimization proportion of distribution network feeder capacity cannot reach the expected standard, so this paper proposes a multi-objective Particle swarm optimization algorithm for distribution network feeder capacity considering dynamic load. The multi-objective method is used to expand the planning scope, the multi-objective Particle swarm optimization feeder capacity planning matrix is set, and the feeder capacity optimization planning calculation model under dynamic load is designed. The experimental results show that the final optimization rate of the feeder capacity in the distribution network can reach over 5, indicating that the designed directional planning algorithm has high measurement accuracy, strong pertinence, and controllable error under dynamic load conditions and has practical application value. |
|---|---|
| AbstractList | The optimization proportion of distribution network feeder capacity cannot reach the expected standard, so this paper proposes a multi-objective Particle swarm optimization algorithm for distribution network feeder capacity considering dynamic load. The multi-objective method is used to expand the planning scope, the multi-objective Particle swarm optimization feeder capacity planning matrix is set, and the feeder capacity optimization planning calculation model under dynamic load is designed. The experimental results show that the final optimization rate of the feeder capacity in the distribution network can reach over 5, indicating that the designed directional planning algorithm has high measurement accuracy, strong pertinence, and controllable error under dynamic load conditions and has practical application value. |
| Author | Zang, Siqi Liu, Jian Yin, Xiang Cheng, Shi |
| Author_xml | – sequence: 1 givenname: Xiang surname: Yin fullname: Yin, Xiang email: yinxiang_9773@qq.com organization: State Grid Xinjiang electric power Co., Ltd.,Urumqi,China,830000 – sequence: 2 givenname: Jian surname: Liu fullname: Liu, Jian organization: State Grid Xinjiang electric power Co., Ltd.,Urumqi,China,830000 – sequence: 3 givenname: Shi surname: Cheng fullname: Cheng, Shi organization: State Grid Xinjiang electric power Co., Ltd.,Urumqi,China,830000 – sequence: 4 givenname: Siqi surname: Zang fullname: Zang, Siqi organization: Xinjiang power transmission and Transformation Co. Ltd.,Urumqi,China,830000 |
| BookMark | eNo1kMtOAjEYRmuiC0XewEV9gMFehul0SQZQEgQSdU0607_460xLSpHg1hf3vjqb73yLc0FOffBAyDVnA86ZvplVi8lqUrBC5wPBhBxwlgvNlTghfa10KYdMailEfk4-7vdtwizUL9AkfAO6MjFh0wJ9OJjY0eU2YYfvJmHwdNRuQsT03FEXIp0CWIi0MlvTYDrSVWu8R7-hwdEx7lLEev-jLSAdQnylVfA7_FK-N-OjNx02dB6MvSRnzrQ76P-xR56mk8fqLpsvb2fVaJ4h5zplXHGQdSlsqVmhnDZgG1UMpc2HzjqtSiuVc8zw0hkDTSGaWjDmXFkoy7Rjskeufn8RANbbiJ2Jx_V_G_kJXwJifQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICNEPE60694.2023.10429172 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350393224 |
| EndPage | 776 |
| ExternalDocumentID | 10429172 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-171e3b82d89067f9aedc7653d45fdf978d37ff0a18faaec62cb200ff867d09f03 |
| IEDL.DBID | RIE |
| IngestDate | Wed May 01 11:49:12 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-171e3b82d89067f9aedc7653d45fdf978d37ff0a18faaec62cb200ff867d09f03 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10429172 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Nov.-24 |
| PublicationDateYYYYMMDD | 2023-11-24 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 3rd International Conference on New Energy and Power Engineering (ICNEPE) |
| PublicationTitleAbbrev | ICNEPE |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8552291 |
| Snippet | The optimization proportion of distribution network feeder capacity cannot reach the expected standard, so this paper proposes a multi-objective Particle swarm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 773 |
| SubjectTerms | Adaptive systems Capacity planning Counting and dynamic load Distribution network Distribution networks Feeder capacity Heuristic algorithms Multi-objective particle swarm Optimization planning Particle swarm optimization Planning Planning algorithm Regulation |
| Title | Multi-objective Particle Swarm Optimization Algorithm for Feeder Capacity Planning of Distribution Network Considering Dynamic Load |
| URI | https://ieeexplore.ieee.org/document/10429172 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sD-JJxYo7T_CamHUyOUoXqmgsaKG3MqtWbSMlRfDqH_dNFkVB8BaGgYR5M2-ZvO_7CDmLI8MkVjsOi6XEAkUyh4lEOVFqsBoxNPJK_ZSbjA7H0dUkntRg9RILo7Uum8-0ax_Lf_kqlyt7VYYnHL0nRtwWaSWMVmCtdXJa82aeX3az_qhPLZTTtargbjP_h3JKGTgGmyRrXln1izy7q0K48v0XG-O_v2mLdL4xejD6ij7bZE0vdshHiad1cvFU-TEY1TsD7t74cg636CDmNfISLl4e8uWseJwDJq4w0JZWAroYPCVm5tCoGUFuoGfZdWthLMiqxnFopD7tnF6law_XOVcdMh7077tDp5ZZcGa-nxaOn_g6FCxQLMXQZVKulUxoHKooNspglanCxBiP-8xwriUNpMCjZQyjifJS44W7pL3IF3qPgAxiSYWkXKMNMFezZHuYH6pABJwqHe-Tjl3B6WvFpDFtFu_gj_FDsmENabF_QXRE2sVypY8xCSjESWn8T2futU4 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB20grpSseLbEdwmNsnMZLKUPqjaxoItdFcm89CqbaSkCG79ce_koSgI7kJISJjHPfcm95yD0AUlhkuodhxOpYQCRXKHJ6FySGSgGjGMNHL_lH7MuiNyM6bjkqyec2G01nnzmXbtYf4vX6VyaT-VwQ6H6AmIu4rWKCGEFnStdXReKmdeXjfj9qDNLJnTtb7gbnXHD--UHDo6WyiuHlp0jDy7yyxx5fsvPcZ_v9U2qn-z9PDgC3920Iqe76KPnFHrpMlTEcnwoFwb-P5NLGb4DkLErORe4quXh3QxzR5nGFJX3NFWWAI3AT4l5Oa48jPCqcEtq69bWmPhuGgdx5XZp72mVTjb414qVB2NOu1hs-uURgvO1POizPFCTwcJ9xWPALxMJLSSIaOBItQoA3WmCkJjGsLjRggtmS8T2FzGcBaqRmQawR6qzdO53kdY-lSyRDKhYQ4gW7Nye5AhKj_xBVOaHqC6HcHJa6GlMakG7_CP82doozvs9ya96_j2CG3aSbVMQJ8co1q2WOoTSAmy5DRfCJ8OCrib |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+International+Conference+on+New+Energy+and+Power+Engineering+%28ICNEPE%29&rft.atitle=Multi-objective+Particle+Swarm+Optimization+Algorithm+for+Feeder+Capacity+Planning+of+Distribution+Network+Considering+Dynamic+Load&rft.au=Yin%2C+Xiang&rft.au=Liu%2C+Jian&rft.au=Cheng%2C+Shi&rft.au=Zang%2C+Siqi&rft.date=2023-11-24&rft.pub=IEEE&rft.spage=773&rft.epage=776&rft_id=info:doi/10.1109%2FICNEPE60694.2023.10429172&rft.externalDocID=10429172 |