Multi-objective Particle Swarm Optimization Algorithm for Feeder Capacity Planning of Distribution Network Considering Dynamic Load

The optimization proportion of distribution network feeder capacity cannot reach the expected standard, so this paper proposes a multi-objective Particle swarm optimization algorithm for distribution network feeder capacity considering dynamic load. The multi-objective method is used to expand the p...

Full description

Saved in:
Bibliographic Details
Published in2023 3rd International Conference on New Energy and Power Engineering (ICNEPE) pp. 773 - 776
Main Authors Yin, Xiang, Liu, Jian, Cheng, Shi, Zang, Siqi
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.11.2023
Subjects
Online AccessGet full text
DOI10.1109/ICNEPE60694.2023.10429172

Cover

Abstract The optimization proportion of distribution network feeder capacity cannot reach the expected standard, so this paper proposes a multi-objective Particle swarm optimization algorithm for distribution network feeder capacity considering dynamic load. The multi-objective method is used to expand the planning scope, the multi-objective Particle swarm optimization feeder capacity planning matrix is set, and the feeder capacity optimization planning calculation model under dynamic load is designed. The experimental results show that the final optimization rate of the feeder capacity in the distribution network can reach over 5, indicating that the designed directional planning algorithm has high measurement accuracy, strong pertinence, and controllable error under dynamic load conditions and has practical application value.
AbstractList The optimization proportion of distribution network feeder capacity cannot reach the expected standard, so this paper proposes a multi-objective Particle swarm optimization algorithm for distribution network feeder capacity considering dynamic load. The multi-objective method is used to expand the planning scope, the multi-objective Particle swarm optimization feeder capacity planning matrix is set, and the feeder capacity optimization planning calculation model under dynamic load is designed. The experimental results show that the final optimization rate of the feeder capacity in the distribution network can reach over 5, indicating that the designed directional planning algorithm has high measurement accuracy, strong pertinence, and controllable error under dynamic load conditions and has practical application value.
Author Zang, Siqi
Liu, Jian
Yin, Xiang
Cheng, Shi
Author_xml – sequence: 1
  givenname: Xiang
  surname: Yin
  fullname: Yin, Xiang
  email: yinxiang_9773@qq.com
  organization: State Grid Xinjiang electric power Co., Ltd.,Urumqi,China,830000
– sequence: 2
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  organization: State Grid Xinjiang electric power Co., Ltd.,Urumqi,China,830000
– sequence: 3
  givenname: Shi
  surname: Cheng
  fullname: Cheng, Shi
  organization: State Grid Xinjiang electric power Co., Ltd.,Urumqi,China,830000
– sequence: 4
  givenname: Siqi
  surname: Zang
  fullname: Zang, Siqi
  organization: Xinjiang power transmission and Transformation Co. Ltd.,Urumqi,China,830000
BookMark eNo1kMtOAjEYRmuiC0XewEV9gMFehul0SQZQEgQSdU0607_460xLSpHg1hf3vjqb73yLc0FOffBAyDVnA86ZvplVi8lqUrBC5wPBhBxwlgvNlTghfa10KYdMailEfk4-7vdtwizUL9AkfAO6MjFh0wJ9OJjY0eU2YYfvJmHwdNRuQsT03FEXIp0CWIi0MlvTYDrSVWu8R7-hwdEx7lLEev-jLSAdQnylVfA7_FK-N-OjNx02dB6MvSRnzrQ76P-xR56mk8fqLpsvb2fVaJ4h5zplXHGQdSlsqVmhnDZgG1UMpc2HzjqtSiuVc8zw0hkDTSGaWjDmXFkoy7Rjskeufn8RANbbiJ2Jx_V_G_kJXwJifQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICNEPE60694.2023.10429172
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350393224
EndPage 776
ExternalDocumentID 10429172
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-171e3b82d89067f9aedc7653d45fdf978d37ff0a18faaec62cb200ff867d09f03
IEDL.DBID RIE
IngestDate Wed May 01 11:49:12 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-171e3b82d89067f9aedc7653d45fdf978d37ff0a18faaec62cb200ff867d09f03
PageCount 4
ParticipantIDs ieee_primary_10429172
PublicationCentury 2000
PublicationDate 2023-Nov.-24
PublicationDateYYYYMMDD 2023-11-24
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-24
  day: 24
PublicationDecade 2020
PublicationTitle 2023 3rd International Conference on New Energy and Power Engineering (ICNEPE)
PublicationTitleAbbrev ICNEPE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8552291
Snippet The optimization proportion of distribution network feeder capacity cannot reach the expected standard, so this paper proposes a multi-objective Particle swarm...
SourceID ieee
SourceType Publisher
StartPage 773
SubjectTerms Adaptive systems
Capacity planning
Counting and dynamic load
Distribution network
Distribution networks
Feeder capacity
Heuristic algorithms
Multi-objective particle swarm
Optimization planning
Particle swarm optimization
Planning
Planning algorithm
Regulation
Title Multi-objective Particle Swarm Optimization Algorithm for Feeder Capacity Planning of Distribution Network Considering Dynamic Load
URI https://ieeexplore.ieee.org/document/10429172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sD-JJxYo7T_CamHUyOUoXqmgsaKG3MqtWbSMlRfDqH_dNFkVB8BaGgYR5M2-ZvO_7CDmLI8MkVjsOi6XEAkUyh4lEOVFqsBoxNPJK_ZSbjA7H0dUkntRg9RILo7Uum8-0ax_Lf_kqlyt7VYYnHL0nRtwWaSWMVmCtdXJa82aeX3az_qhPLZTTtargbjP_h3JKGTgGmyRrXln1izy7q0K48v0XG-O_v2mLdL4xejD6ij7bZE0vdshHiad1cvFU-TEY1TsD7t74cg636CDmNfISLl4e8uWseJwDJq4w0JZWAroYPCVm5tCoGUFuoGfZdWthLMiqxnFopD7tnF6law_XOVcdMh7077tDp5ZZcGa-nxaOn_g6FCxQLMXQZVKulUxoHKooNspglanCxBiP-8xwriUNpMCjZQyjifJS44W7pL3IF3qPgAxiSYWkXKMNMFezZHuYH6pABJwqHe-Tjl3B6WvFpDFtFu_gj_FDsmENabF_QXRE2sVypY8xCSjESWn8T2futU4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB20grpSseLbEdwmNsnMZLKUPqjaxoItdFcm89CqbaSkCG79ce_koSgI7kJISJjHPfcm95yD0AUlhkuodhxOpYQCRXKHJ6FySGSgGjGMNHL_lH7MuiNyM6bjkqyec2G01nnzmXbtYf4vX6VyaT-VwQ6H6AmIu4rWKCGEFnStdXReKmdeXjfj9qDNLJnTtb7gbnXHD--UHDo6WyiuHlp0jDy7yyxx5fsvPcZ_v9U2qn-z9PDgC3920Iqe76KPnFHrpMlTEcnwoFwb-P5NLGb4DkLErORe4quXh3QxzR5nGFJX3NFWWAI3AT4l5Oa48jPCqcEtq69bWmPhuGgdx5XZp72mVTjb414qVB2NOu1hs-uURgvO1POizPFCTwcJ9xWPALxMJLSSIaOBItQoA3WmCkJjGsLjRggtmS8T2FzGcBaqRmQawR6qzdO53kdY-lSyRDKhYQ4gW7Nye5AhKj_xBVOaHqC6HcHJa6GlMakG7_CP82doozvs9ya96_j2CG3aSbVMQJ8co1q2WOoTSAmy5DRfCJ8OCrib
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+International+Conference+on+New+Energy+and+Power+Engineering+%28ICNEPE%29&rft.atitle=Multi-objective+Particle+Swarm+Optimization+Algorithm+for+Feeder+Capacity+Planning+of+Distribution+Network+Considering+Dynamic+Load&rft.au=Yin%2C+Xiang&rft.au=Liu%2C+Jian&rft.au=Cheng%2C+Shi&rft.au=Zang%2C+Siqi&rft.date=2023-11-24&rft.pub=IEEE&rft.spage=773&rft.epage=776&rft_id=info:doi/10.1109%2FICNEPE60694.2023.10429172&rft.externalDocID=10429172