Automatic Eating Behavior Detection from Wrist Motion Sensor Using Bayesian, Gradient Boosting, and Topological Persistence Methods

The goal of this article is to develop a pattern recognition algorithm for detecting periods of food intake based on passively collected wearable device motion sensor data, accelerometer and gyroscope in a free-living condition. The main contributions of this work are the following. First, we use re...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE International Conference on Big Data (Big Data) pp. 1809 - 1815
Main Authors Chung, Yu-Min, Nikooienejad, Amir, Zhang, Bo
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.12.2022
Subjects
Online AccessGet full text
DOI10.1109/BigData55660.2022.10021031

Cover

Abstract The goal of this article is to develop a pattern recognition algorithm for detecting periods of food intake based on passively collected wearable device motion sensor data, accelerometer and gyroscope in a free-living condition. The main contributions of this work are the following. First, we use recently developed methods in topological data analysis (TDA) to create and extract key features. Second, we employ a novel Bayesian feature selection tool, BVSNLP, to reduce the dimensionality of the problem. Developing this algorithm in an efficient way, we believe it can be deployed on edge devices as well. We demonstrate the performance of our method on a dataset that contains a total of 1000 hours of accelerometer and gyroscope sensor data from 13 subjects.
AbstractList The goal of this article is to develop a pattern recognition algorithm for detecting periods of food intake based on passively collected wearable device motion sensor data, accelerometer and gyroscope in a free-living condition. The main contributions of this work are the following. First, we use recently developed methods in topological data analysis (TDA) to create and extract key features. Second, we employ a novel Bayesian feature selection tool, BVSNLP, to reduce the dimensionality of the problem. Developing this algorithm in an efficient way, we believe it can be deployed on edge devices as well. We demonstrate the performance of our method on a dataset that contains a total of 1000 hours of accelerometer and gyroscope sensor data from 13 subjects.
Author Chung, Yu-Min
Nikooienejad, Amir
Zhang, Bo
Author_xml – sequence: 1
  givenname: Yu-Min
  surname: Chung
  fullname: Chung, Yu-Min
  email: chung_yu_min@lilly.com
  organization: Eli Lilly and Company,AADS,Indianapolis,USA
– sequence: 2
  givenname: Amir
  surname: Nikooienejad
  fullname: Nikooienejad, Amir
  organization: Eli Lilly and Company,AADS,Indianapolis,USA
– sequence: 3
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
  organization: Eli Lilly and Company,AADS,Indianapolis,USA
BookMark eNo1kE9PAjEUxGuiB0W-gYfGM2Bfu7vdPfJPNIFoIsQjeVteoQm0ZFtNOPvFXVEvM8lk5neYG3bpgyfG7kEMAET1MHLbCSbM86IQAymkHIAQEoSCC9atdAlFkWelyHK4Zl_DjxQOmJzh01b9lo9oh58uNHxCiUxywXPbhAN_b1xMfBHOyRv52FZW8bzAE0WHvsdnDW4c-cRHIcQfWo-j3_BlOIZ92DqDe_5KTWxB5A3xBaVd2MRbdmVxH6n75x22epwux0_9-cvseTyc9x1AlfogRUa1FSStLqzQOlOZAlVhjromW1NeKYtS6doaIxWRKJWFkrTKNCkwqsPufrmOiNbHxh2wOa3_v1HfnRJiFA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigData55660.2022.10021031
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665480451
1665480459
EndPage 1815
ExternalDocumentID 10021031
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-1204ebf0e2f76f0774343139a5a7befbe593fa237bfcc23ee083f18e7347e31c3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:56 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1204ebf0e2f76f0774343139a5a7befbe593fa237bfcc23ee083f18e7347e31c3
PageCount 7
ParticipantIDs ieee_primary_10021031
PublicationCentury 2000
PublicationDate 2022-Dec.-17
PublicationDateYYYYMMDD 2022-12-17
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Big Data (Big Data)
PublicationTitleAbbrev Big Data
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8270487
Snippet The goal of this article is to develop a pattern recognition algorithm for detecting periods of food intake based on passively collected wearable device motion...
SourceID ieee
SourceType Publisher
StartPage 1809
SubjectTerms Accelerometers
Big Data
Feature extraction
Image edge detection
Performance evaluation
Wearable computers
Wrist
Title Automatic Eating Behavior Detection from Wrist Motion Sensor Using Bayesian, Gradient Boosting, and Topological Persistence Methods
URI https://ieeexplore.ieee.org/document/10021031
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA26kycVJ_4mB49r1zRpshyd2xzChuCGu40k_SJDaGXrDnr1HzfJOkVB8FJKSduQryXvS957H0LXXFLdSWQeSQY8YkzSSCXCuIPi2grbSYMqbTTmwym7n2WzWqwetDAAEMhnEPvTsJefl2btl8raJGQoXjW9Kzp8I9aqjURJItvdxXNPVSpzCCVxmV-axtsbfpROCTPHYB-Nt-_cEEZe4nWlY_P-y47x3506QM1vkR5--Jp-DtEOFEfo42ZdlcGFFfeVZzTj2gBxiXtQBdpVgb2kBD_5vxuPQhEf_OiSWdck8AdwV72Bl1a28N0yEMIq3C3LlX9aC6six5NNYQUfXuwZ9P5L8b0ZhWrUqyaaDvqT22FU11mIFoTIKiJpwkDbBFIruE0cIKQOVlCpMiU0WA2ZpFalVGhrTEoBHGyzpAOCMgGUGHqMGkVZwAnCXGhlXHhzh0qYTZlmOWQGDFdWSy7IKWr6EZy_bqw05tvBO_vj-jna84H0_BEiLlCjWq7h0qGASl-F6H8CQE-1dw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0MHvSkRoy_7cEjg3XtVnoUAVGBmAiRG2m7r4aYbAa2g179x20LaDQx8bI0y340_dr0fdt730PoMhFUNUORBoJBEjAmaCBDru1BJspw04y8Km0wTHpjdjeJJyuxutfCAIAnn0HdNf2__DTXpftU1iA-Q3Gq6c2YMRYv5VqrUqIkFI3W7LktCxlbjBLa3C-K6utbfpin-L2ju4OG67cuKSMv9bJQdf3-qyDjv7u1i6rfMj388LUB7aENyPbRx1VZ5L4OK-5Ix2nGqxKIc9yGwhOvMuxEJfjJrW888DY--NGms_YSzyDALfkGTlxZwzdzTwkrcCvPF-5pNSyzFI-W1gouwNhx6N1ccb0ZeD_qRRWNu53RdS9YOS0EM0JEEZAoZKBMCJHhiQktJKQWWFAhY8kVGAWxoEZGlCujdUQBLHAzpAmcMg6UaHqAKlmewSHCCVdS2wCnFpcwEzHFUog16EQaJRJOjlDVjeD0dVlMY7oevOM_zl-grd5o0J_2b4f3J2jbBdWxSQg_RZViXsKZxQSFOvcz4RPov7jE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Big+Data+%28Big+Data%29&rft.atitle=Automatic+Eating+Behavior+Detection+from+Wrist+Motion+Sensor+Using+Bayesian%2C+Gradient+Boosting%2C+and+Topological+Persistence+Methods&rft.au=Chung%2C+Yu-Min&rft.au=Nikooienejad%2C+Amir&rft.au=Zhang%2C+Bo&rft.date=2022-12-17&rft.pub=IEEE&rft.spage=1809&rft.epage=1815&rft_id=info:doi/10.1109%2FBigData55660.2022.10021031&rft.externalDocID=10021031