Automatic Eating Behavior Detection from Wrist Motion Sensor Using Bayesian, Gradient Boosting, and Topological Persistence Methods
The goal of this article is to develop a pattern recognition algorithm for detecting periods of food intake based on passively collected wearable device motion sensor data, accelerometer and gyroscope in a free-living condition. The main contributions of this work are the following. First, we use re...
        Saved in:
      
    
          | Published in | 2022 IEEE International Conference on Big Data (Big Data) pp. 1809 - 1815 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        17.12.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/BigData55660.2022.10021031 | 
Cover
| Abstract | The goal of this article is to develop a pattern recognition algorithm for detecting periods of food intake based on passively collected wearable device motion sensor data, accelerometer and gyroscope in a free-living condition. The main contributions of this work are the following. First, we use recently developed methods in topological data analysis (TDA) to create and extract key features. Second, we employ a novel Bayesian feature selection tool, BVSNLP, to reduce the dimensionality of the problem. Developing this algorithm in an efficient way, we believe it can be deployed on edge devices as well. We demonstrate the performance of our method on a dataset that contains a total of 1000 hours of accelerometer and gyroscope sensor data from 13 subjects. | 
    
|---|---|
| AbstractList | The goal of this article is to develop a pattern recognition algorithm for detecting periods of food intake based on passively collected wearable device motion sensor data, accelerometer and gyroscope in a free-living condition. The main contributions of this work are the following. First, we use recently developed methods in topological data analysis (TDA) to create and extract key features. Second, we employ a novel Bayesian feature selection tool, BVSNLP, to reduce the dimensionality of the problem. Developing this algorithm in an efficient way, we believe it can be deployed on edge devices as well. We demonstrate the performance of our method on a dataset that contains a total of 1000 hours of accelerometer and gyroscope sensor data from 13 subjects. | 
    
| Author | Chung, Yu-Min Nikooienejad, Amir Zhang, Bo  | 
    
| Author_xml | – sequence: 1 givenname: Yu-Min surname: Chung fullname: Chung, Yu-Min email: chung_yu_min@lilly.com organization: Eli Lilly and Company,AADS,Indianapolis,USA – sequence: 2 givenname: Amir surname: Nikooienejad fullname: Nikooienejad, Amir organization: Eli Lilly and Company,AADS,Indianapolis,USA – sequence: 3 givenname: Bo surname: Zhang fullname: Zhang, Bo organization: Eli Lilly and Company,AADS,Indianapolis,USA  | 
    
| BookMark | eNo1kE9PAjEUxGuiB0W-gYfGM2Bfu7vdPfJPNIFoIsQjeVteoQm0ZFtNOPvFXVEvM8lk5neYG3bpgyfG7kEMAET1MHLbCSbM86IQAymkHIAQEoSCC9atdAlFkWelyHK4Zl_DjxQOmJzh01b9lo9oh58uNHxCiUxywXPbhAN_b1xMfBHOyRv52FZW8bzAE0WHvsdnDW4c-cRHIcQfWo-j3_BlOIZ92DqDe_5KTWxB5A3xBaVd2MRbdmVxH6n75x22epwux0_9-cvseTyc9x1AlfogRUa1FSStLqzQOlOZAlVhjromW1NeKYtS6doaIxWRKJWFkrTKNCkwqsPufrmOiNbHxh2wOa3_v1HfnRJiFA | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/BigData55660.2022.10021031 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781665480451 1665480459  | 
    
| EndPage | 1815 | 
    
| ExternalDocumentID | 10021031 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i119t-1204ebf0e2f76f0774343139a5a7befbe593fa237bfcc23ee083f18e7347e31c3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jan 18 11:13:56 EST 2024 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i119t-1204ebf0e2f76f0774343139a5a7befbe593fa237bfcc23ee083f18e7347e31c3 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | ieee_primary_10021031 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-Dec.-17 | 
    
| PublicationDateYYYYMMDD | 2022-12-17 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-17 day: 17  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2022 IEEE International Conference on Big Data (Big Data) | 
    
| PublicationTitleAbbrev | Big Data | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.8270487 | 
    
| Snippet | The goal of this article is to develop a pattern recognition algorithm for detecting periods of food intake based on passively collected wearable device motion... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1809 | 
    
| SubjectTerms | Accelerometers Big Data Feature extraction Image edge detection Performance evaluation Wearable computers Wrist  | 
    
| Title | Automatic Eating Behavior Detection from Wrist Motion Sensor Using Bayesian, Gradient Boosting, and Topological Persistence Methods | 
    
| URI | https://ieeexplore.ieee.org/document/10021031 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA26kycVJ_4mB49r1zRpshyd2xzChuCGu40k_SJDaGXrDnr1HzfJOkVB8FJKSduQryXvS957H0LXXFLdSWQeSQY8YkzSSCXCuIPi2grbSYMqbTTmwym7n2WzWqwetDAAEMhnEPvTsJefl2btl8raJGQoXjW9Kzp8I9aqjURJItvdxXNPVSpzCCVxmV-axtsbfpROCTPHYB-Nt-_cEEZe4nWlY_P-y47x3506QM1vkR5--Jp-DtEOFEfo42ZdlcGFFfeVZzTj2gBxiXtQBdpVgb2kBD_5vxuPQhEf_OiSWdck8AdwV72Bl1a28N0yEMIq3C3LlX9aC6six5NNYQUfXuwZ9P5L8b0ZhWrUqyaaDvqT22FU11mIFoTIKiJpwkDbBFIruE0cIKQOVlCpMiU0WA2ZpFalVGhrTEoBHGyzpAOCMgGUGHqMGkVZwAnCXGhlXHhzh0qYTZlmOWQGDFdWSy7IKWr6EZy_bqw05tvBO_vj-jna84H0_BEiLlCjWq7h0qGASl-F6H8CQE-1dw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0MHvSkRoy_7cEjg3XtVnoUAVGBmAiRG2m7r4aYbAa2g179x20LaDQx8bI0y340_dr0fdt730PoMhFUNUORBoJBEjAmaCBDru1BJspw04y8Km0wTHpjdjeJJyuxutfCAIAnn0HdNf2__DTXpftU1iA-Q3Gq6c2YMRYv5VqrUqIkFI3W7LktCxlbjBLa3C-K6utbfpin-L2ju4OG67cuKSMv9bJQdf3-qyDjv7u1i6rfMj388LUB7aENyPbRx1VZ5L4OK-5Ix2nGqxKIc9yGwhOvMuxEJfjJrW888DY--NGms_YSzyDALfkGTlxZwzdzTwkrcCvPF-5pNSyzFI-W1gouwNhx6N1ccb0ZeD_qRRWNu53RdS9YOS0EM0JEEZAoZKBMCJHhiQktJKQWWFAhY8kVGAWxoEZGlCujdUQBLHAzpAmcMg6UaHqAKlmewSHCCVdS2wCnFpcwEzHFUog16EQaJRJOjlDVjeD0dVlMY7oevOM_zl-grd5o0J_2b4f3J2jbBdWxSQg_RZViXsKZxQSFOvcz4RPov7jE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Big+Data+%28Big+Data%29&rft.atitle=Automatic+Eating+Behavior+Detection+from+Wrist+Motion+Sensor+Using+Bayesian%2C+Gradient+Boosting%2C+and+Topological+Persistence+Methods&rft.au=Chung%2C+Yu-Min&rft.au=Nikooienejad%2C+Amir&rft.au=Zhang%2C+Bo&rft.date=2022-12-17&rft.pub=IEEE&rft.spage=1809&rft.epage=1815&rft_id=info:doi/10.1109%2FBigData55660.2022.10021031&rft.externalDocID=10021031 |