Fixed Attribute Value Removal Method and Anomaly Based Profiled Method, An SQLi Detection Effectiveness Study

In this work, performance of two existing SQL injection detection methods is compared and analysed together. The first existing method uses removal of SQL query attribute values method, and the other one uses database profiling technique in detecting malicious SQL query in SQL injection attacks. Bot...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Data Science and Its Applications (ICoDSA) pp. 72 - 78
Main Authors Kamaruzman, Shamsul Alam, Isnin, Ismail Fauzi, Din, Mazura Mat
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.10.2021
Subjects
Online AccessGet full text
DOI10.1109/ICoDSA53588.2021.9617523

Cover

Abstract In this work, performance of two existing SQL injection detection methods is compared and analysed together. The first existing method uses removal of SQL query attribute values method, and the other one uses database profiling technique in detecting malicious SQL query in SQL injection attacks. Both detection method algorithms are implemented and tested using SQL query log generated from DVWA and Mutillidae web applications. Analysis and evaluation from results of the experiment showed that detection method based on the considered database profiling method is found to be much flexible and more effective. Nevertheless, it was found that the former method still has some room of improvement that could be done. Therefore, improvement on the former method is proposed that increase the effectiveness of the method to distinguish non-malicious query and the malicious query during the SQL injection detection process.
AbstractList In this work, performance of two existing SQL injection detection methods is compared and analysed together. The first existing method uses removal of SQL query attribute values method, and the other one uses database profiling technique in detecting malicious SQL query in SQL injection attacks. Both detection method algorithms are implemented and tested using SQL query log generated from DVWA and Mutillidae web applications. Analysis and evaluation from results of the experiment showed that detection method based on the considered database profiling method is found to be much flexible and more effective. Nevertheless, it was found that the former method still has some room of improvement that could be done. Therefore, improvement on the former method is proposed that increase the effectiveness of the method to distinguish non-malicious query and the malicious query during the SQL injection detection process.
Author Isnin, Ismail Fauzi
Kamaruzman, Shamsul Alam
Din, Mazura Mat
Author_xml – sequence: 1
  givenname: Shamsul Alam
  surname: Kamaruzman
  fullname: Kamaruzman, Shamsul Alam
  email: shamsulkamaruzman@gmail.com
  organization: University of Technology Malaysia,School of Computing, Faculty of Engineering,Skudai,Malaysia
– sequence: 2
  givenname: Ismail Fauzi
  surname: Isnin
  fullname: Isnin, Ismail Fauzi
  email: ismailfauzi@utm.my
  organization: University of Technology Malaysia,School of Computing, Faculty of Engineering,Skudai,Malaysia
– sequence: 3
  givenname: Mazura Mat
  surname: Din
  fullname: Din, Mazura Mat
  email: mazuramd@gmail.com
  organization: Universiti Teknologi MARA (UiTM),Faculty of Computer and Mathematical Science,Merbok,Malaysia
BookMark eNotkMtOwzAURI0ECyj9Ajb-AFp8_Yq9LH1RKYhHgW3lJNfCUhKjxK3o3xPUrmakOTOLuSGXbWyREApsCsDsw2YeF9uZEsqYKWccplZDpri4IGObGdBaSSmY0NekWYVfrOgspS4U-4T0y9V7pO_YxIOr6TOm71hR1w5IGxtXH-mj64fCaxd9qAdzIu6HmG7f8kAXmLBMIbZ06f2_O2CLfU-3aV8db8mVd3WP47OOyOdq-TF_muQv6818lk8CgEkTtM4yqEoHsvASjOdlprlSzFjtCpUxKL0XYHSBUHCnUJZKWJsJqSX3FsSI3J12AyLufrrQuO64O58g_gAqp1c2
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICoDSA53588.2021.9617523
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665443036
1665443030
EndPage 78
ExternalDocumentID 9617523
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-e9a901dca14bf418f2c762550896ab5701cff3186be1b2a5e4c5399734642f913
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-e9a901dca14bf418f2c762550896ab5701cff3186be1b2a5e4c5399734642f913
PageCount 7
ParticipantIDs ieee_primary_9617523
PublicationCentury 2000
PublicationDate 2021-Oct.-6
PublicationDateYYYYMMDD 2021-10-06
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-6
  day: 06
PublicationDecade 2020
PublicationTitle 2021 International Conference on Data Science and Its Applications (ICoDSA)
PublicationTitleAbbrev ICODSA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7750058
Snippet In this work, performance of two existing SQL injection detection methods is compared and analysed together. The first existing method uses removal of SQL...
SourceID ieee
SourceType Publisher
StartPage 72
SubjectTerms Data science
database security
detection method
effectiveness
Error analysis
Security
SQL injection
Title Fixed Attribute Value Removal Method and Anomaly Based Profiled Method, An SQLi Detection Effectiveness Study
URI https://ieeexplore.ieee.org/document/9617523
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkyc1YPydHjyyse5H2x0RJGjEqIjhRtr1NSHCZsyWiH-97TYwGg_emvZlXdrtfXvd976H0CXngQgINV9uEIVOGAF3OBeeA4LpCBhVhNhs5PE9HU3D21k0a6DONhcGAEryGbi2Wf7LV1lS2KOybmzg1gROO2iHcVrlam3IOV7cvelng0kvCiJuKVs-cWvzH3VTStgY7qHxZsKKLfLqFrl0k89fWoz_vaN91P5O0MMPW-g5QA1IW2g1XHyAwr28KmIF-EUsC8BPsMrM44THZa1oLFJjkmYrsVzjKwNhyl7IqjOp2qJjhvHk8W6BB5CXRK0UVxrHtWPElnu4bqPp8Pq5P3LqagrOwgQRuQOxMNivEkFCqUPCtZ8YR2gCFB5TISPmkURr84ZTCUT6IoIwsaq1LAhNiKJjEhyiZpqlcIQw9WSgGZVcUGXVbUSgOfP92HhWJpmSx6hll2r-VglmzOtVOvm7-xTt2u0qGXL0DDXz9wLODdLn8qLc4i-Gj6ma
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uCRAd3arjsiSECBqIDhRtrtLSHCZsyWiH-97TYwGg_elq5dm3Z7X1_3ve8hdCOEIx3C9c4NGLUoA2EJIZsWSDdk4PKAEBONPBzx3pTez9ishGrbWBgAyMhnUDeX2b_8IPZTc1TW8DTcasdpB-0ySinLo7U29Jym1-i34864xRwmDGnLJvWiwY_MKRlwdA_QcNNlzhd5raeJqvufv9QY_zumQ1T9DtHDj1vwOUIliCpo1V18QIBbSZ7GCvCLXKaAn2EV6xcKD7Ns0VhGukoUr-RyjW81iAXmQUafKShq1PRtPH4aLHAHkoyqFeFc5bgwjdiwD9dVNO3eTdo9q8inYC20G5FY4EmN_oEvCVUhJSK0fW0KtYsiPC4Vc5vED0P9jXMFRNmSAfWNbq3rUO2khB5xjlE5iiM4QZg3lRO6XAnJA6NvI51QuLbtadvqKjdQp6hipmr-lktmzItZOvu7-Brt9SbDwXzQHz2co32zdBlfjl-gcvKewqXG_URdZcv9BZYurOc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Data+Science+and+Its+Applications+%28ICoDSA%29&rft.atitle=Fixed+Attribute+Value+Removal+Method+and+Anomaly+Based+Profiled+Method%2C+An+SQLi+Detection+Effectiveness+Study&rft.au=Kamaruzman%2C+Shamsul+Alam&rft.au=Isnin%2C+Ismail+Fauzi&rft.au=Din%2C+Mazura+Mat&rft.date=2021-10-06&rft.pub=IEEE&rft.spage=72&rft.epage=78&rft_id=info:doi/10.1109%2FICoDSA53588.2021.9617523&rft.externalDocID=9617523