Multi-modal Medical Image Fusion Technique to Improve Glioma Classification Accuracy
Usually, the low grade (LGG) and high-grade glioma (HGG) classification algorithms proposed in the literature directly concatenate the magnetic resonance image (MRI) modalities that directly affect the accuracy and precision results. Therefore, here this problem is highlighted at the initial level b...
Saved in:
| Published in | 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) pp. 321 - 325 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
22.10.2021
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ICSIP52628.2021.9689018 |
Cover
| Abstract | Usually, the low grade (LGG) and high-grade glioma (HGG) classification algorithms proposed in the literature directly concatenate the magnetic resonance image (MRI) modalities that directly affect the accuracy and precision results. Therefore, here this problem is highlighted at the initial level by applying a multi-modality fusion scheme. First, multi-level edge-preserving filtering (MLEPF) is applied to decompose the source images into fine-structure (FS), coarse-structure (CS), and base (BS) layers. Then, the novel sum-modified Laplacian (NSML) and parameter Adaptive PCNN based fusion strategy is adopted for the fusion FS and CS layers. Where region energy (RE) and information entropy (IE) based fuzzy pixel rules are implemented for the fusion of BS layers. The final fused image is achieved by integrating all the three fused layers. Visual and quantitative analysis prove that the proposed scheme results are satisfactory compare to the state-of-art. The results were also evaluated by using the Google Inception V3 convolutional neural network (CNN). |
|---|---|
| AbstractList | Usually, the low grade (LGG) and high-grade glioma (HGG) classification algorithms proposed in the literature directly concatenate the magnetic resonance image (MRI) modalities that directly affect the accuracy and precision results. Therefore, here this problem is highlighted at the initial level by applying a multi-modality fusion scheme. First, multi-level edge-preserving filtering (MLEPF) is applied to decompose the source images into fine-structure (FS), coarse-structure (CS), and base (BS) layers. Then, the novel sum-modified Laplacian (NSML) and parameter Adaptive PCNN based fusion strategy is adopted for the fusion FS and CS layers. Where region energy (RE) and information entropy (IE) based fuzzy pixel rules are implemented for the fusion of BS layers. The final fused image is achieved by integrating all the three fused layers. Visual and quantitative analysis prove that the proposed scheme results are satisfactory compare to the state-of-art. The results were also evaluated by using the Google Inception V3 convolutional neural network (CNN). |
| Author | Zhao, Yaqin Noor, Alam Wu, Longwen Ullah, Hikmat Zhao, Liang |
| Author_xml | – sequence: 1 givenname: Hikmat surname: Ullah fullname: Ullah, Hikmat email: hikmat_hk@hit.edu.cn organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001 – sequence: 2 givenname: Yaqin surname: Zhao fullname: Zhao, Yaqin email: yaqinzhao@hit.edu.cn organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001 – sequence: 3 givenname: Longwen surname: Wu fullname: Wu, Longwen email: wulongwen@hit.edu.cn organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001 – sequence: 4 givenname: Alam surname: Noor fullname: Noor, Alam email: pinkheart_gold@yahoo.com organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001 – sequence: 5 givenname: Liang surname: Zhao fullname: Zhao, Liang email: 49717222@qq.com organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001 |
| BookMark | eNotj8tOwzAURI0ECyj9Ahb4BxJ87cS1l1VES6RWVGpYV7ZzDZaSuOSB1L8niK7OYs6MNA_ktosdEvIMLAVg-qUsjuUh55KrlDMOqZZKM1A3ZKlXCqTMM6FZJu9JtZ-aMSRtrE1D91gHN7NszSfSzTSE2NEK3VcXviekY5yTcx9_kG6bEFtDi8YMQ_BzafxT185NvXGXR3LnTTPg8soF-di8VsVbsnvflsV6lwQANSaoLHNaOWVzXXubM-3BZDrLkVvkK3BSKOACWM3k7IK33jhhBVpXK45aLMjT_25AxNO5D63pL6frV_ELJDBP2g |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSIP52628.2021.9689018 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665439046 1665439041 |
| EndPage | 325 |
| ExternalDocumentID | 9689018 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-e8b0c98c8b59dfb509f1a4945e2be271c63812310d06e8b1fbfac3b3ebcd82e93 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:48 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-e8b0c98c8b59dfb509f1a4945e2be271c63812310d06e8b1fbfac3b3ebcd82e93 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9689018 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Oct.-22 |
| PublicationDateYYYYMMDD | 2021-10-22 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) |
| PublicationTitleAbbrev | ICSIP |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.805344 |
| Snippet | Usually, the low grade (LGG) and high-grade glioma (HGG) classification algorithms proposed in the literature directly concatenate the magnetic resonance image... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 321 |
| SubjectTerms | Fuzzy Logic Glioma Classification Image edge detection Internet Laplace equations Magnetic resonance Magnetic resonance imaging MRI Multi-modality Fusion PA-PCNN Statistical analysis Visualization |
| Title | Multi-modal Medical Image Fusion Technique to Improve Glioma Classification Accuracy |
| URI | https://ieeexplore.ieee.org/document/9689018 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDZtTzttox1748OOc5o4TmIfR1nXDjoKa6G3YisKlLXNKMlh-_Wzk7RjY4fdjBHYSFiypE8SIXfKSGUi3zAEqZgAzJiRkDGtQs3TRIe8apk_eYlHc_G8iBYtcn-ohUHECnyGnltWufw0h9KFyvoqltZ8yTZpJzKua7UayFbgq_548DqeRjzmDrHFA6-h_jE2pbIaw2My2Z9Xg0XevLIwHnz-asX43wudkN53fR6dHizPKWnhtktmVS0t2-SpXtMm_0LHG6sv6LB0MTE62_drpUVO62gC0qf1Kt9oWg3HdLChSlL0AaDcafjokfnwcTYYsWZmAltZV6FgKI0PSoI0kUozKwWVBVooESE3yJMA7HsL3J8u9WNLG2Qm0xCaEA2kkqMKz0hnm2_xnFBjnScJaYQi0iKNQwOQcIjQF5AEwqgL0nUcWb7XbTGWDTMu_96-IkdOKk7tc35NOsWuxBtrzwtzWwnyCzDoo7E |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEG4QH_RJDRh_2wcfHWxdO9pHQ0SmQEgcCW-kvd0SIjBDtgf9613HwGh88K1pmrS5S_v17r67I-ROGamMcI2DIJXDARPHSEgcrXzN4o72WVkyfzgK-hP-PBXTGrnf5cIgYkk-w5YdlrH8OIXcusraKpAFfMk9si8452KTrVWRtjxXtcPuazgWLGCWs8W8VrX-R-OUEjd6R2S43XFDF3lr5ZlpweevYoz_PdIxaX5n6NHxDntOSA1XDRKV2bTOMo31glYRGBouixeD9nLrFaPRtmIrzVK68ScgfVrM06WmZXtMSxwqdUUfAPK1ho8mmfQeo27fqbomOPPCWMgclMYFJUEaoeKk0INKPM0VF8gMso4HxY3z7K8udoNirZeYRINvfDQQS4bKPyX1VbrCM0JNYT5JiAVyoXkc-Aagw0Cgy6HjcaPOScNKZPa-KYwxq4Rx8ff0LTnoR8PBbBCOXi7JodWQBQHGrkg9W-d4XaB7Zm5KpX4B8Yim_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+6th+International+Conference+on+Signal+and+Image+Processing+%28ICSIP%29&rft.atitle=Multi-modal+Medical+Image+Fusion+Technique+to+Improve+Glioma+Classification+Accuracy&rft.au=Ullah%2C+Hikmat&rft.au=Zhao%2C+Yaqin&rft.au=Wu%2C+Longwen&rft.au=Noor%2C+Alam&rft.date=2021-10-22&rft.pub=IEEE&rft.spage=321&rft.epage=325&rft_id=info:doi/10.1109%2FICSIP52628.2021.9689018&rft.externalDocID=9689018 |