Multi-modal Medical Image Fusion Technique to Improve Glioma Classification Accuracy

Usually, the low grade (LGG) and high-grade glioma (HGG) classification algorithms proposed in the literature directly concatenate the magnetic resonance image (MRI) modalities that directly affect the accuracy and precision results. Therefore, here this problem is highlighted at the initial level b...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) pp. 321 - 325
Main Authors Ullah, Hikmat, Zhao, Yaqin, Wu, Longwen, Noor, Alam, Zhao, Liang
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.10.2021
Subjects
Online AccessGet full text
DOI10.1109/ICSIP52628.2021.9689018

Cover

Abstract Usually, the low grade (LGG) and high-grade glioma (HGG) classification algorithms proposed in the literature directly concatenate the magnetic resonance image (MRI) modalities that directly affect the accuracy and precision results. Therefore, here this problem is highlighted at the initial level by applying a multi-modality fusion scheme. First, multi-level edge-preserving filtering (MLEPF) is applied to decompose the source images into fine-structure (FS), coarse-structure (CS), and base (BS) layers. Then, the novel sum-modified Laplacian (NSML) and parameter Adaptive PCNN based fusion strategy is adopted for the fusion FS and CS layers. Where region energy (RE) and information entropy (IE) based fuzzy pixel rules are implemented for the fusion of BS layers. The final fused image is achieved by integrating all the three fused layers. Visual and quantitative analysis prove that the proposed scheme results are satisfactory compare to the state-of-art. The results were also evaluated by using the Google Inception V3 convolutional neural network (CNN).
AbstractList Usually, the low grade (LGG) and high-grade glioma (HGG) classification algorithms proposed in the literature directly concatenate the magnetic resonance image (MRI) modalities that directly affect the accuracy and precision results. Therefore, here this problem is highlighted at the initial level by applying a multi-modality fusion scheme. First, multi-level edge-preserving filtering (MLEPF) is applied to decompose the source images into fine-structure (FS), coarse-structure (CS), and base (BS) layers. Then, the novel sum-modified Laplacian (NSML) and parameter Adaptive PCNN based fusion strategy is adopted for the fusion FS and CS layers. Where region energy (RE) and information entropy (IE) based fuzzy pixel rules are implemented for the fusion of BS layers. The final fused image is achieved by integrating all the three fused layers. Visual and quantitative analysis prove that the proposed scheme results are satisfactory compare to the state-of-art. The results were also evaluated by using the Google Inception V3 convolutional neural network (CNN).
Author Zhao, Yaqin
Noor, Alam
Wu, Longwen
Ullah, Hikmat
Zhao, Liang
Author_xml – sequence: 1
  givenname: Hikmat
  surname: Ullah
  fullname: Ullah, Hikmat
  email: hikmat_hk@hit.edu.cn
  organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001
– sequence: 2
  givenname: Yaqin
  surname: Zhao
  fullname: Zhao, Yaqin
  email: yaqinzhao@hit.edu.cn
  organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001
– sequence: 3
  givenname: Longwen
  surname: Wu
  fullname: Wu, Longwen
  email: wulongwen@hit.edu.cn
  organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001
– sequence: 4
  givenname: Alam
  surname: Noor
  fullname: Noor, Alam
  email: pinkheart_gold@yahoo.com
  organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001
– sequence: 5
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  email: 49717222@qq.com
  organization: Harbin Institute of Technology,School of Electronics and Information Engineering,Harbin,P.R. China,150001
BookMark eNotj8tOwzAURI0ECyj9Ahb4BxJ87cS1l1VES6RWVGpYV7ZzDZaSuOSB1L8niK7OYs6MNA_ktosdEvIMLAVg-qUsjuUh55KrlDMOqZZKM1A3ZKlXCqTMM6FZJu9JtZ-aMSRtrE1D91gHN7NszSfSzTSE2NEK3VcXviekY5yTcx9_kG6bEFtDi8YMQ_BzafxT185NvXGXR3LnTTPg8soF-di8VsVbsnvflsV6lwQANSaoLHNaOWVzXXubM-3BZDrLkVvkK3BSKOACWM3k7IK33jhhBVpXK45aLMjT_25AxNO5D63pL6frV_ELJDBP2g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSIP52628.2021.9689018
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665439046
1665439041
EndPage 325
ExternalDocumentID 9689018
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-e8b0c98c8b59dfb509f1a4945e2be271c63812310d06e8b1fbfac3b3ebcd82e93
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-e8b0c98c8b59dfb509f1a4945e2be271c63812310d06e8b1fbfac3b3ebcd82e93
PageCount 5
ParticipantIDs ieee_primary_9689018
PublicationCentury 2000
PublicationDate 2021-Oct.-22
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP)
PublicationTitleAbbrev ICSIP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.805344
Snippet Usually, the low grade (LGG) and high-grade glioma (HGG) classification algorithms proposed in the literature directly concatenate the magnetic resonance image...
SourceID ieee
SourceType Publisher
StartPage 321
SubjectTerms Fuzzy Logic
Glioma Classification
Image edge detection
Internet
Laplace equations
Magnetic resonance
Magnetic resonance imaging
MRI
Multi-modality Fusion
PA-PCNN
Statistical analysis
Visualization
Title Multi-modal Medical Image Fusion Technique to Improve Glioma Classification Accuracy
URI https://ieeexplore.ieee.org/document/9689018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDZtTzttox1748OOc5o4TmIfR1nXDjoKa6G3YisKlLXNKMlh-_Wzk7RjY4fdjBHYSFiypE8SIXfKSGUi3zAEqZgAzJiRkDGtQs3TRIe8apk_eYlHc_G8iBYtcn-ohUHECnyGnltWufw0h9KFyvoqltZ8yTZpJzKua7UayFbgq_548DqeRjzmDrHFA6-h_jE2pbIaw2My2Z9Xg0XevLIwHnz-asX43wudkN53fR6dHizPKWnhtktmVS0t2-SpXtMm_0LHG6sv6LB0MTE62_drpUVO62gC0qf1Kt9oWg3HdLChSlL0AaDcafjokfnwcTYYsWZmAltZV6FgKI0PSoI0kUozKwWVBVooESE3yJMA7HsL3J8u9WNLG2Qm0xCaEA2kkqMKz0hnm2_xnFBjnScJaYQi0iKNQwOQcIjQF5AEwqgL0nUcWb7XbTGWDTMu_96-IkdOKk7tc35NOsWuxBtrzwtzWwnyCzDoo7E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEG4QH_RJDRh_2wcfHWxdO9pHQ0SmQEgcCW-kvd0SIjBDtgf9613HwGh88K1pmrS5S_v17r67I-ROGamMcI2DIJXDARPHSEgcrXzN4o72WVkyfzgK-hP-PBXTGrnf5cIgYkk-w5YdlrH8OIXcusraKpAFfMk9si8452KTrVWRtjxXtcPuazgWLGCWs8W8VrX-R-OUEjd6R2S43XFDF3lr5ZlpweevYoz_PdIxaX5n6NHxDntOSA1XDRKV2bTOMo31glYRGBouixeD9nLrFaPRtmIrzVK68ScgfVrM06WmZXtMSxwqdUUfAPK1ho8mmfQeo27fqbomOPPCWMgclMYFJUEaoeKk0INKPM0VF8gMso4HxY3z7K8udoNirZeYRINvfDQQS4bKPyX1VbrCM0JNYT5JiAVyoXkc-Aagw0Cgy6HjcaPOScNKZPa-KYwxq4Rx8ff0LTnoR8PBbBCOXi7JodWQBQHGrkg9W-d4XaB7Zm5KpX4B8Yim_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+6th+International+Conference+on+Signal+and+Image+Processing+%28ICSIP%29&rft.atitle=Multi-modal+Medical+Image+Fusion+Technique+to+Improve+Glioma+Classification+Accuracy&rft.au=Ullah%2C+Hikmat&rft.au=Zhao%2C+Yaqin&rft.au=Wu%2C+Longwen&rft.au=Noor%2C+Alam&rft.date=2021-10-22&rft.pub=IEEE&rft.spage=321&rft.epage=325&rft_id=info:doi/10.1109%2FICSIP52628.2021.9689018&rft.externalDocID=9689018