State of health diagnostic and remain useful life prognostic for lithium-ion battery by combining multi-kernel in Gaussian process regression
The state of health and the remain useful life are key necessary indicators to optimize the operation and reliability of lithium-ion batteries, thus guaranteeing safety and minimizing maintenance costs. However, the complex physicochemical characteristics of degradation maximize these risks. An anal...
Saved in:
| Published in | 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON) pp. 1 - 4 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
05.08.2021
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/INTERCON52678.2021.9532733 |
Cover
| Abstract | The state of health and the remain useful life are key necessary indicators to optimize the operation and reliability of lithium-ion batteries, thus guaranteeing safety and minimizing maintenance costs. However, the complex physicochemical characteristics of degradation maximize these risks. An analysis of the curves of its main degradation characteristics and a Gaussian Process Regression model based on the combination of multi-kernel are proposed in this paper. The data used for the research comes from the open-source NASA Randomized Battery Usage Dataset. The proposed algorithm obtained results in the diagnostic of the state of health of 1.13% and 98.34% in the quantitative tests of mean square error and precision, respectively. In the prognostic of the remaining useful life, it was possible to predict 64 cycles with a margin of error with the real of 1.54%. |
|---|---|
| AbstractList | The state of health and the remain useful life are key necessary indicators to optimize the operation and reliability of lithium-ion batteries, thus guaranteeing safety and minimizing maintenance costs. However, the complex physicochemical characteristics of degradation maximize these risks. An analysis of the curves of its main degradation characteristics and a Gaussian Process Regression model based on the combination of multi-kernel are proposed in this paper. The data used for the research comes from the open-source NASA Randomized Battery Usage Dataset. The proposed algorithm obtained results in the diagnostic of the state of health of 1.13% and 98.34% in the quantitative tests of mean square error and precision, respectively. In the prognostic of the remaining useful life, it was possible to predict 64 cycles with a margin of error with the real of 1.54%. |
| Author | Garay, Fernando Vargas-Machuca, Juan Huaman, William |
| Author_xml | – sequence: 1 givenname: Fernando surname: Garay fullname: Garay, Fernando email: fernando.garay.v@uni.pe organization: Graduate School of the Faculty of Mechanical Engineering National University of Engineering,Lima,Perú – sequence: 2 givenname: William surname: Huaman fullname: Huaman, William email: william.huaman.u@uni.pe organization: Graduate School of the Faculty of Mechanical Engineering National University of Engineering,Lima,Perú – sequence: 3 givenname: Juan surname: Vargas-Machuca fullname: Vargas-Machuca, Juan email: juan.vargas.m@uni.edu.pe organization: Graduate School of the Faculty of Mechanical Engineering National University of Engineering,Lima,Perú |
| BookMark | eNo1kE1OwzAUhI0ECyg9ARuLfYrtJP5ZoqqUSlUrQVlXL8lza5E4le0segjuTFDLaqTR6BvNPJBb33sk5JmzGefMvKw2u8XHfLsphVR6JpjgM1PmQuX5DZkapbmUZcGF4PKe_HwmSEh7S48IbTrSxsHB9zG5moJvaMAOnKdDRDu0tHUW6Sn0_wnbh9FLRzd0mes9rSAlDGdanWndd5Xzzh9oN7TJZd8YPLZ0ZC1hiNGB_wPVGOPYcQijjoBHcmehjTi96oR8vS128_dsvV2u5q_rzHGuU4ZlIUyhGmlNAyVUXOWAYAqUxlasNBJLrDmA4pJJLcblimujOGOVbZjW-YQ8XbgOEfen4DoI5_31pPwXGgBl7g |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/INTERCON52678.2021.9532733 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665412216 1665412216 |
| EndPage | 4 |
| ExternalDocumentID | 9532733 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-e542947d6f9da5ab173aea94e69fb0596e5ec1aa716068227371897100bfd0883 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:40 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-e542947d6f9da5ab173aea94e69fb0596e5ec1aa716068227371897100bfd0883 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9532733 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Aug.-5 |
| PublicationDateYYYYMMDD | 2021-08-05 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-Aug.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON) |
| PublicationTitleAbbrev | INTERCON |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7688794 |
| Snippet | The state of health and the remain useful life are key necessary indicators to optimize the operation and reliability of lithium-ion batteries, thus... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Degradation Gaussian process regression Gaussian processes Lithium-ion batteries multi-kernel Prediction algorithms Reliability remaining useful life Safety state of health Training data |
| Title | State of health diagnostic and remain useful life prognostic for lithium-ion battery by combining multi-kernel in Gaussian process regression |
| URI | https://ieeexplore.ieee.org/document/9532733 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Qkyc1YPxODx7tYOu6jzMRiQnoQRJupF3fKgEGge2A_8H_7NtuYjQevC3Nti7tm_djfZ7nJeQ29HUmRcoZGKxVQ6kzptDtscCSNlOdSB5bcvJwFA3G4eNETBrkbs-FAQAHPgPPXrqzfL3KSvurrJMKjtGWH5CDOIkqrlatI-p3047TkO09jUSADhgrv8D36gd-dE5xgaN_RIZfU1Z4kblXFsrL3n-pMf73m45J-5uiR5_3weeENCBvkQ-XOtKVoRW9keoKSIfGQWWu6QaWcpbTcgumXNDFzAC1-Kz6Dkxfcax4m5VLhrtFlZPe3FG1o2iWynWSoA6AyOawyWFB8V0PstxaHiZdV4wDnOO1gtbmbTLu37_0Bqzut8BmWGYUDGzvqjDWkUm1FFL5MZcg0xCi1CjbpgcEZL6UWGJ1I0wsYo6BLbXyQMpo9Fb8lDTzVQ5nhEo_6OqYqySKdChMJrnRgYAkFFIYHcI5admlnK4rSY1pvYoXfw9fkkO7nQ53J65Is9iUcI25QKFunBF8AjlZuUk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG5QD3pSA8bf9uDRAVvbjZ2NiAroARJupF1flQCD4HbQ_8H_2dduYjQevC3Nti7ty_uxft_3CLnkvk6kiJkHBmtVLnXiKXR7XmBJm7FuSRZZcnKvH3aG_H4kRhVytebCAIADn0HdXrqzfL1IcvurrBELhtGWbZAtwTkXBVurVBL1m3HDqcheP_ZFgC4Ya7_Ar5eP_Oid4kJHe5f0viYtECPTep6pevL-S4_xv1-1R2rfJD36tA4_-6QCaZV8uOSRLgwtCI5UF1A6NA8qU01XMJeTlOavYPIZnU0MUIvQKu_ABBbHspdJPvdwv6hy4ptvVL1RNEzleklQB0H0prBKYUbxXbcyf7VMTLosOAc4x3MBrk1rZNi-GVx3vLLjgjfBQiPzwHav4pEOTaylkMqPmAQZcwhjo2yjHhCQ-FJikdUMMbWIGIa22AoEKaPRX7EDspkuUjgkVPpBU0dMtcJQc2ESyYwOBLS4kMJoDkekapdyvCxENcblKh7_PXxBtjuDXnfcves_nJAdu7UOhSdOyWa2yuEMM4NMnTuD-AQSr7yW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+XXVIII+International+Conference+on+Electronics%2C+Electrical+Engineering+and+Computing+%28INTERCON%29&rft.atitle=State+of+health+diagnostic+and+remain+useful+life+prognostic+for+lithium-ion+battery+by+combining+multi-kernel+in+Gaussian+process+regression&rft.au=Garay%2C+Fernando&rft.au=Huaman%2C+William&rft.au=Vargas-Machuca%2C+Juan&rft.date=2021-08-05&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FINTERCON52678.2021.9532733&rft.externalDocID=9532733 |