State of health diagnostic and remain useful life prognostic for lithium-ion battery by combining multi-kernel in Gaussian process regression

The state of health and the remain useful life are key necessary indicators to optimize the operation and reliability of lithium-ion batteries, thus guaranteeing safety and minimizing maintenance costs. However, the complex physicochemical characteristics of degradation maximize these risks. An anal...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON) pp. 1 - 4
Main Authors Garay, Fernando, Huaman, William, Vargas-Machuca, Juan
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.08.2021
Subjects
Online AccessGet full text
DOI10.1109/INTERCON52678.2021.9532733

Cover

Abstract The state of health and the remain useful life are key necessary indicators to optimize the operation and reliability of lithium-ion batteries, thus guaranteeing safety and minimizing maintenance costs. However, the complex physicochemical characteristics of degradation maximize these risks. An analysis of the curves of its main degradation characteristics and a Gaussian Process Regression model based on the combination of multi-kernel are proposed in this paper. The data used for the research comes from the open-source NASA Randomized Battery Usage Dataset. The proposed algorithm obtained results in the diagnostic of the state of health of 1.13% and 98.34% in the quantitative tests of mean square error and precision, respectively. In the prognostic of the remaining useful life, it was possible to predict 64 cycles with a margin of error with the real of 1.54%.
AbstractList The state of health and the remain useful life are key necessary indicators to optimize the operation and reliability of lithium-ion batteries, thus guaranteeing safety and minimizing maintenance costs. However, the complex physicochemical characteristics of degradation maximize these risks. An analysis of the curves of its main degradation characteristics and a Gaussian Process Regression model based on the combination of multi-kernel are proposed in this paper. The data used for the research comes from the open-source NASA Randomized Battery Usage Dataset. The proposed algorithm obtained results in the diagnostic of the state of health of 1.13% and 98.34% in the quantitative tests of mean square error and precision, respectively. In the prognostic of the remaining useful life, it was possible to predict 64 cycles with a margin of error with the real of 1.54%.
Author Garay, Fernando
Vargas-Machuca, Juan
Huaman, William
Author_xml – sequence: 1
  givenname: Fernando
  surname: Garay
  fullname: Garay, Fernando
  email: fernando.garay.v@uni.pe
  organization: Graduate School of the Faculty of Mechanical Engineering National University of Engineering,Lima,Perú
– sequence: 2
  givenname: William
  surname: Huaman
  fullname: Huaman, William
  email: william.huaman.u@uni.pe
  organization: Graduate School of the Faculty of Mechanical Engineering National University of Engineering,Lima,Perú
– sequence: 3
  givenname: Juan
  surname: Vargas-Machuca
  fullname: Vargas-Machuca, Juan
  email: juan.vargas.m@uni.edu.pe
  organization: Graduate School of the Faculty of Mechanical Engineering National University of Engineering,Lima,Perú
BookMark eNo1kE1OwzAUhI0ECyg9ARuLfYrtJP5ZoqqUSlUrQVlXL8lza5E4le0segjuTFDLaqTR6BvNPJBb33sk5JmzGefMvKw2u8XHfLsphVR6JpjgM1PmQuX5DZkapbmUZcGF4PKe_HwmSEh7S48IbTrSxsHB9zG5moJvaMAOnKdDRDu0tHUW6Sn0_wnbh9FLRzd0mes9rSAlDGdanWndd5Xzzh9oN7TJZd8YPLZ0ZC1hiNGB_wPVGOPYcQijjoBHcmehjTi96oR8vS128_dsvV2u5q_rzHGuU4ZlIUyhGmlNAyVUXOWAYAqUxlasNBJLrDmA4pJJLcblimujOGOVbZjW-YQ8XbgOEfen4DoI5_31pPwXGgBl7g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INTERCON52678.2021.9532733
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665412216
1665412216
EndPage 4
ExternalDocumentID 9532733
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-e542947d6f9da5ab173aea94e69fb0596e5ec1aa716068227371897100bfd0883
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:40 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-e542947d6f9da5ab173aea94e69fb0596e5ec1aa716068227371897100bfd0883
PageCount 4
ParticipantIDs ieee_primary_9532733
PublicationCentury 2000
PublicationDate 2021-Aug.-5
PublicationDateYYYYMMDD 2021-08-05
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-Aug.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON)
PublicationTitleAbbrev INTERCON
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7688794
Snippet The state of health and the remain useful life are key necessary indicators to optimize the operation and reliability of lithium-ion batteries, thus...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Degradation
Gaussian process regression
Gaussian processes
Lithium-ion batteries
multi-kernel
Prediction algorithms
Reliability
remaining useful life
Safety
state of health
Training data
Title State of health diagnostic and remain useful life prognostic for lithium-ion battery by combining multi-kernel in Gaussian process regression
URI https://ieeexplore.ieee.org/document/9532733
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Qkyc1YPxODx7tYOu6jzMRiQnoQRJupF3fKgEGge2A_8H_7NtuYjQevC3Nti7tm_djfZ7nJeQ29HUmRcoZGKxVQ6kzptDtscCSNlOdSB5bcvJwFA3G4eNETBrkbs-FAQAHPgPPXrqzfL3KSvurrJMKjtGWH5CDOIkqrlatI-p3047TkO09jUSADhgrv8D36gd-dE5xgaN_RIZfU1Z4kblXFsrL3n-pMf73m45J-5uiR5_3weeENCBvkQ-XOtKVoRW9keoKSIfGQWWu6QaWcpbTcgumXNDFzAC1-Kz6Dkxfcax4m5VLhrtFlZPe3FG1o2iWynWSoA6AyOawyWFB8V0PstxaHiZdV4wDnOO1gtbmbTLu37_0Bqzut8BmWGYUDGzvqjDWkUm1FFL5MZcg0xCi1CjbpgcEZL6UWGJ1I0wsYo6BLbXyQMpo9Fb8lDTzVQ5nhEo_6OqYqySKdChMJrnRgYAkFFIYHcI5admlnK4rSY1pvYoXfw9fkkO7nQ53J65Is9iUcI25QKFunBF8AjlZuUk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG5QD3pSA8bf9uDRAVvbjZ2NiAroARJupF1flQCD4HbQ_8H_2dduYjQevC3Nti7ty_uxft_3CLnkvk6kiJkHBmtVLnXiKXR7XmBJm7FuSRZZcnKvH3aG_H4kRhVytebCAIADn0HdXrqzfL1IcvurrBELhtGWbZAtwTkXBVurVBL1m3HDqcheP_ZFgC4Ya7_Ar5eP_Oid4kJHe5f0viYtECPTep6pevL-S4_xv1-1R2rfJD36tA4_-6QCaZV8uOSRLgwtCI5UF1A6NA8qU01XMJeTlOavYPIZnU0MUIvQKu_ABBbHspdJPvdwv6hy4ptvVL1RNEzleklQB0H0prBKYUbxXbcyf7VMTLosOAc4x3MBrk1rZNi-GVx3vLLjgjfBQiPzwHav4pEOTaylkMqPmAQZcwhjo2yjHhCQ-FJikdUMMbWIGIa22AoEKaPRX7EDspkuUjgkVPpBU0dMtcJQc2ESyYwOBLS4kMJoDkekapdyvCxENcblKh7_PXxBtjuDXnfcves_nJAdu7UOhSdOyWa2yuEMM4NMnTuD-AQSr7yW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+XXVIII+International+Conference+on+Electronics%2C+Electrical+Engineering+and+Computing+%28INTERCON%29&rft.atitle=State+of+health+diagnostic+and+remain+useful+life+prognostic+for+lithium-ion+battery+by+combining+multi-kernel+in+Gaussian+process+regression&rft.au=Garay%2C+Fernando&rft.au=Huaman%2C+William&rft.au=Vargas-Machuca%2C+Juan&rft.date=2021-08-05&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FINTERCON52678.2021.9532733&rft.externalDocID=9532733