Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method

Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy...

Full description

Saved in:
Bibliographic Details
Published in2022 Power System and Green Energy Conference (PSGEC) pp. 848 - 852
Main Authors Zhang, Yanjun, Zhao, Peng, Han, Ziyang, Yang, Luyu, Chen, Junrui
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2022
Subjects
Online AccessGet full text
DOI10.1109/PSGEC54663.2022.9881194

Cover

Abstract Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance.
AbstractList Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance.
Author Zhang, Yanjun
Chen, Junrui
Han, Ziyang
Zhao, Peng
Yang, Luyu
Author_xml – sequence: 1
  givenname: Yanjun
  surname: Zhang
  fullname: Zhang, Yanjun
  email: zhangyj641@163.com
  organization: State Grid Liaoning Electric Power Co., Ltd,Liaoning,China
– sequence: 2
  givenname: Peng
  surname: Zhao
  fullname: Zhao, Peng
  email: 1160021940@qq.com
  organization: State Grid Liaoning Electric Power Co., Ltd,Liaoning,China
– sequence: 3
  givenname: Ziyang
  surname: Han
  fullname: Han, Ziyang
  email: a1544859132@163.com
  organization: Northeast Electric Power University,Jilin,China
– sequence: 4
  givenname: Luyu
  surname: Yang
  fullname: Yang, Luyu
  email: yangluyu_k@163.com
  organization: State Grid Liaoning Electric Power Research Institute,Liaoning,China
– sequence: 5
  givenname: Junrui
  surname: Chen
  fullname: Chen, Junrui
  email: 13844237492@qq.com
  organization: Northeast Electric Power University,Jilin,China
BookMark eNot0FFPwjAUBeCa6IOgv8AH-wfA3XXt1kdEQBImRtRXctfeSZOx4lpC-PcS4ekkX07Ow-mx69a3xNgjJEOARD-9r2aTscyUEsM0SdOhLgoAnV2xHiglM621gFsWFv7Apx397qk1R74MxjUNRudbXnpLfG6pja525myj5sd3Lm62_BkDWX6i7_KFv3kXiH-Q3Zv_GraWr6I3GwzRGb7aV2GHhnhJcePtHbupsQl0f8k--5pOPsevg8VyNh-PFgMHUMQBZUKaTCsrc9Q5QmHqCkxSqTQ9aZHLJK9TQJsXApMKZU1VplBCrWSltDCizx7Ou46I1rvObbE7ri8_iD8ATFmK
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PSGEC54663.2022.9881194
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665499931
9781665499934
EndPage 852
ExternalDocumentID 9881194
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-e435c496d57a97a18cfb1c0b62249687507f21ad783a0ba5feb46a51f65b693c3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:28 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-e435c496d57a97a18cfb1c0b62249687507f21ad783a0ba5feb46a51f65b693c3
PageCount 5
ParticipantIDs ieee_primary_9881194
PublicationCentury 2000
PublicationDate 2022-Aug.
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.
PublicationDecade 2020
PublicationTitle 2022 Power System and Green Energy Conference (PSGEC)
PublicationTitleAbbrev PSGEC54663
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8202481
Snippet Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online...
SourceID ieee
SourceType Publisher
StartPage 848
SubjectTerms low-frequency oscillation
Noise measurement
Noise reduction
Power measurement
Power system stability
Simulation
Stability analysis
stochastic subspace identification algorithm
variational mode decomposition
White noise
Title Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method
URI https://ieeexplore.ieee.org/document/9881194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjzKWLeu646KIDGCRMRwI23XChE3AyNG_3pft4nRePDWNE3a9LX9-rXfew-hMwIrRfoa9rekrEkFnINwjYAS1a6hAPFc52qLAeuN6c0kmFTQ-cYXRmudi8-0Y4v5X36cqrV9KmtFnBMg3VVUDTkrfLVKyRZxo9ZwdN1pBxQgFGif5zll6x9pU3LU6G6j_ld_hVjk2Vln0lEfv0Ix_ndAO6jx7Z-Hhxvk2UUVndTR6jZ9w91lIY1-x3eAbYtC6IZtwjNcuOSa8o0OXyye0uU8m73gSwCyGEPVY_8KD9L5SuN7G9A1byaSGI-yVM2EDeiM7TkDLFvjfp55uoHG3c5Du9csUyo058AksqaG25GiEYuDUEShIFwZSZQrGSB5xIC7uKHxiIhD7gtXisBoMKEIiGGBZJGv_D1US9JE7yNsYhVSE_rAaRRwPC58KhmPFYC-9gXxDlDdTtj0tYiaMS3n6vDv6iO0ZY1WSOuOUS1brvUJwH0mT3M7fwLVOqwE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pSA8a3PXh0ly3b7uOoCKKySAQMN9J2WyHiroElRn-9sw8xGg_emqZJm07br1_7zQxCZwRWirAV7G9BHYNyOAfhGgElqixNAeI9laktuk57SG9HbFRC5ytfGKVUJj5TZlrM_vLDWC7Tp7Ka73kESPcaWmeUUpZ7axWiLWL5tV7_utlgFEAUiF-9bhbtfyROyXCjtYWCrx5zucizuUyEKT9-BWP875C2UfXbQw_3Vtizg0oqqqBFJ37DrXkujn7H94Bus1zqhtOUZzh3ytXFKx2-mD3F82kyecGXAGUhhqrH4Ap34-lC4Yc0pGvWjEch7iexnPA0pDNOTxrg2QoHWe7pKhq2moNG2yiSKhhT4BKJoeB-JKnvhMzlvsuJJ7Ug0hIOYLnvAHuxXF0nPHQ9m1uCM63AiJwR7TDh-La0d1E5iiO1h7AOpUu1awOrkcDyPG5T4XihBNhXNif1fVRJJ2z8msfNGBdzdfB39SnaaA-Czrhz0707RJupAXOh3REqJ_OlOgbwT8RJZvNPAl2vUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+Power+System+and+Green+Energy+Conference+%28PSGEC%29&rft.atitle=Low+Frequency+Oscillation+Mode+Identification+Algorithm+Based+on+VMD+Noise+Reduction+and+Stochastic+Subspace+Method&rft.au=Zhang%2C+Yanjun&rft.au=Zhao%2C+Peng&rft.au=Han%2C+Ziyang&rft.au=Yang%2C+Luyu&rft.date=2022-08-01&rft.pub=IEEE&rft.spage=848&rft.epage=852&rft_id=info:doi/10.1109%2FPSGEC54663.2022.9881194&rft.externalDocID=9881194