Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method
Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy...
Saved in:
| Published in | 2022 Power System and Green Energy Conference (PSGEC) pp. 848 - 852 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/PSGEC54663.2022.9881194 |
Cover
| Abstract | Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance. |
|---|---|
| AbstractList | Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance. |
| Author | Zhang, Yanjun Chen, Junrui Han, Ziyang Zhao, Peng Yang, Luyu |
| Author_xml | – sequence: 1 givenname: Yanjun surname: Zhang fullname: Zhang, Yanjun email: zhangyj641@163.com organization: State Grid Liaoning Electric Power Co., Ltd,Liaoning,China – sequence: 2 givenname: Peng surname: Zhao fullname: Zhao, Peng email: 1160021940@qq.com organization: State Grid Liaoning Electric Power Co., Ltd,Liaoning,China – sequence: 3 givenname: Ziyang surname: Han fullname: Han, Ziyang email: a1544859132@163.com organization: Northeast Electric Power University,Jilin,China – sequence: 4 givenname: Luyu surname: Yang fullname: Yang, Luyu email: yangluyu_k@163.com organization: State Grid Liaoning Electric Power Research Institute,Liaoning,China – sequence: 5 givenname: Junrui surname: Chen fullname: Chen, Junrui email: 13844237492@qq.com organization: Northeast Electric Power University,Jilin,China |
| BookMark | eNot0FFPwjAUBeCa6IOgv8AH-wfA3XXt1kdEQBImRtRXctfeSZOx4lpC-PcS4ekkX07Ow-mx69a3xNgjJEOARD-9r2aTscyUEsM0SdOhLgoAnV2xHiglM621gFsWFv7Apx397qk1R74MxjUNRudbXnpLfG6pja525myj5sd3Lm62_BkDWX6i7_KFv3kXiH-Q3Zv_GraWr6I3GwzRGb7aV2GHhnhJcePtHbupsQl0f8k--5pOPsevg8VyNh-PFgMHUMQBZUKaTCsrc9Q5QmHqCkxSqTQ9aZHLJK9TQJsXApMKZU1VplBCrWSltDCizx7Ou46I1rvObbE7ri8_iD8ATFmK |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PSGEC54663.2022.9881194 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665499931 9781665499934 |
| EndPage | 852 |
| ExternalDocumentID | 9881194 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-e435c496d57a97a18cfb1c0b62249687507f21ad783a0ba5feb46a51f65b693c3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:28 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-e435c496d57a97a18cfb1c0b62249687507f21ad783a0ba5feb46a51f65b693c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9881194 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Aug. |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug. |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 Power System and Green Energy Conference (PSGEC) |
| PublicationTitleAbbrev | PSGEC54663 |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8202481 |
| Snippet | Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 848 |
| SubjectTerms | low-frequency oscillation Noise measurement Noise reduction Power measurement Power system stability Simulation Stability analysis stochastic subspace identification algorithm variational mode decomposition White noise |
| Title | Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method |
| URI | https://ieeexplore.ieee.org/document/9881194 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjzKWLeu646KIDGCRMRwI23XChE3AyNG_3pft4nRePDWNE3a9LX9-rXfew-hMwIrRfoa9rekrEkFnINwjYAS1a6hAPFc52qLAeuN6c0kmFTQ-cYXRmudi8-0Y4v5X36cqrV9KmtFnBMg3VVUDTkrfLVKyRZxo9ZwdN1pBxQgFGif5zll6x9pU3LU6G6j_ld_hVjk2Vln0lEfv0Ix_ndAO6jx7Z-Hhxvk2UUVndTR6jZ9w91lIY1-x3eAbYtC6IZtwjNcuOSa8o0OXyye0uU8m73gSwCyGEPVY_8KD9L5SuN7G9A1byaSGI-yVM2EDeiM7TkDLFvjfp55uoHG3c5Du9csUyo058AksqaG25GiEYuDUEShIFwZSZQrGSB5xIC7uKHxiIhD7gtXisBoMKEIiGGBZJGv_D1US9JE7yNsYhVSE_rAaRRwPC58KhmPFYC-9gXxDlDdTtj0tYiaMS3n6vDv6iO0ZY1WSOuOUS1brvUJwH0mT3M7fwLVOqwE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pSA8a3PXh0ly3b7uOoCKKySAQMN9J2WyHiroElRn-9sw8xGg_emqZJm07br1_7zQxCZwRWirAV7G9BHYNyOAfhGgElqixNAeI9laktuk57SG9HbFRC5ytfGKVUJj5TZlrM_vLDWC7Tp7Ka73kESPcaWmeUUpZ7axWiLWL5tV7_utlgFEAUiF-9bhbtfyROyXCjtYWCrx5zucizuUyEKT9-BWP875C2UfXbQw_3Vtizg0oqqqBFJ37DrXkujn7H94Bus1zqhtOUZzh3ytXFKx2-mD3F82kyecGXAGUhhqrH4Ap34-lC4Yc0pGvWjEch7iexnPA0pDNOTxrg2QoHWe7pKhq2moNG2yiSKhhT4BKJoeB-JKnvhMzlvsuJJ7Ug0hIOYLnvAHuxXF0nPHQ9m1uCM63AiJwR7TDh-La0d1E5iiO1h7AOpUu1awOrkcDyPG5T4XihBNhXNif1fVRJJ2z8msfNGBdzdfB39SnaaA-Czrhz0707RJupAXOh3REqJ_OlOgbwT8RJZvNPAl2vUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+Power+System+and+Green+Energy+Conference+%28PSGEC%29&rft.atitle=Low+Frequency+Oscillation+Mode+Identification+Algorithm+Based+on+VMD+Noise+Reduction+and+Stochastic+Subspace+Method&rft.au=Zhang%2C+Yanjun&rft.au=Zhao%2C+Peng&rft.au=Han%2C+Ziyang&rft.au=Yang%2C+Luyu&rft.date=2022-08-01&rft.pub=IEEE&rft.spage=848&rft.epage=852&rft_id=info:doi/10.1109%2FPSGEC54663.2022.9881194&rft.externalDocID=9881194 |