Cross-subject federated transfer learning with quanvolutional layer for Motor Imagery classification

The Brain-Computer Interface (BCI) systems play an important role in the Rehabilitation therapy, Smart-home, Intelligent Transportation fields. To the best of our knowledge, different from the cross-trial and cross-run tasks, the data privacy of the huge amount of datasets from multiple subjects pre...

Full description

Saved in:
Bibliographic Details
Published inChinese Automation Congress (Online) pp. 5736 - 5741
Main Authors Hu, Ruihan, Zhou, Xuefeng, Xu, Zhihao, Liao, Zhaoyang, Wu, Hongmin, Qu, Hongyi, Tang, Zhi-Ri
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.10.2021
Subjects
Online AccessGet full text
ISSN2688-0938
DOI10.1109/CAC53003.2021.9727351

Cover

Abstract The Brain-Computer Interface (BCI) systems play an important role in the Rehabilitation therapy, Smart-home, Intelligent Transportation fields. To the best of our knowledge, different from the cross-trial and cross-run tasks, the data privacy of the huge amount of datasets from multiple subjects prevents the research for the cross-subject transfer learning of the BCI classification task. In this paper, a simple federated transfer framework, namely Federated Transfer Network with Quanvolutional Architecture (FTL-QL), is proposed to overcome this problem. The Riemannian spatial Encoder-Decoder backbone that contains the Quanvolutional and Encoder-Decoder layers to execute the quantum, Manifold Riemannian Coding and Log-Euclidean Riemannian Decoding computation to extract the discriminative information features for cross-subjects' transfer learning. Then the Federated module which calculated by the FederatedAveraging method to train the top layer of the FTL-QL for each subject. The performance of the FTL-QL is benchmarked on the EEG Motor Imagery datasets. Several experiments about the BCI classification task show the proposed FTL-QL can achieve superior learning performance for Cross-subject transfer learning.
AbstractList The Brain-Computer Interface (BCI) systems play an important role in the Rehabilitation therapy, Smart-home, Intelligent Transportation fields. To the best of our knowledge, different from the cross-trial and cross-run tasks, the data privacy of the huge amount of datasets from multiple subjects prevents the research for the cross-subject transfer learning of the BCI classification task. In this paper, a simple federated transfer framework, namely Federated Transfer Network with Quanvolutional Architecture (FTL-QL), is proposed to overcome this problem. The Riemannian spatial Encoder-Decoder backbone that contains the Quanvolutional and Encoder-Decoder layers to execute the quantum, Manifold Riemannian Coding and Log-Euclidean Riemannian Decoding computation to extract the discriminative information features for cross-subjects' transfer learning. Then the Federated module which calculated by the FederatedAveraging method to train the top layer of the FTL-QL for each subject. The performance of the FTL-QL is benchmarked on the EEG Motor Imagery datasets. Several experiments about the BCI classification task show the proposed FTL-QL can achieve superior learning performance for Cross-subject transfer learning.
Author Zhou, Xuefeng
Tang, Zhi-Ri
Xu, Zhihao
Qu, Hongyi
Liao, Zhaoyang
Hu, Ruihan
Wu, Hongmin
Author_xml – sequence: 1
  givenname: Ruihan
  surname: Hu
  fullname: Hu, Ruihan
  email: rh.hu@giim.ac.cn
  organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China
– sequence: 2
  givenname: Xuefeng
  surname: Zhou
  fullname: Zhou, Xuefeng
  email: xf.zhou@giim.ac.cn
  organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China
– sequence: 3
  givenname: Zhihao
  surname: Xu
  fullname: Xu, Zhihao
  email: zh.xu@giim.ac.cn
  organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China
– sequence: 4
  givenname: Zhaoyang
  surname: Liao
  fullname: Liao, Zhaoyang
  email: zy.liao@giim.ac.cn
  organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China
– sequence: 5
  givenname: Hongmin
  surname: Wu
  fullname: Wu, Hongmin
  email: hm.wu@giim.ac.cn
  organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China
– sequence: 6
  givenname: Hongyi
  surname: Qu
  fullname: Qu, Hongyi
  email: hy.qu@giim.ac.cn
  organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China
– sequence: 7
  givenname: Zhi-Ri
  surname: Tang
  fullname: Tang, Zhi-Ri
  email: gerintang@163.com
  organization: Wuhan University,School of Physics and Technology,Wuhan,China
BookMark eNotkM1KAzEYRaMo2NY-gQh5gan5z2RZBq2Fihtdl0zmS02ZZjRJlb69I3Zz7-ZwuNwpuopDBITuKVlQSsxDs2wkJ4QvGGF0YTTTXNILNKVKScGU0OQSTZiq64oYXt-gec57QgjjVEhBJqhr0pBzlY_tHlzBHjpItkCHS7Ixe0i4B5tiiDv8E8oH_jra-D30xxKGaHvc29OI-CHhl6GMuT7YHaQTdr3NOfjg7B94i6697TPMzz1D70-Pb81ztXldrZvlpgqU1qUCoty4W1HtdNcKaaRlXBgKzhvGqGZtbZRslbREeDYS4DjtOmIE1Z5xy2fo7t8bAGD7mcLBptP2fAr_BZ7aWd8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CAC53003.2021.9727351
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès ENAC - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665426470
9781665426473
EISSN 2688-0938
EndPage 5741
ExternalDocumentID 9727351
Genre orig-research
GrantInformation_xml – fundername: Technology Development
  funderid: 10.13039/100006180
– fundername: Xinjiang Production and Construction Corps
  funderid: 10.13039/501100009967
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Ministry of Education
  funderid: 10.13039/100010002
– fundername: Guangdong Academy of Sciences
  funderid: 10.13039/501100009075
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i118t-e06c166617c7db4595a23491ecf922172b8965b65a04f2db4ec31dd09417f23a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:47:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-e06c166617c7db4595a23491ecf922172b8965b65a04f2db4ec31dd09417f23a3
PageCount 6
ParticipantIDs ieee_primary_9727351
PublicationCentury 2000
PublicationDate 2021-Oct.-22
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-22
  day: 22
PublicationDecade 2020
PublicationTitle Chinese Automation Congress (Online)
PublicationTitleAbbrev CAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002314540
Score 1.825173
Snippet The Brain-Computer Interface (BCI) systems play an important role in the Rehabilitation therapy, Smart-home, Intelligent Transportation fields. To the best of...
SourceID ieee
SourceType Publisher
StartPage 5736
SubjectTerms Cross-subject transfer learning
Encoding
Feature extraction
FederatedAveraging
Manifolds
Medical treatment
Quantum computing
The Riemannian spatial Encoder-Decoder backbone
Transfer learning
Transportation
Title Cross-subject federated transfer learning with quanvolutional layer for Motor Imagery classification
URI https://ieeexplore.ieee.org/document/9727351
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT55UWvHNHjyaNLvZPPYowVKFigcLvZXN7kTEmmqbCPrrnUljRfHgLYQNG3YWvm9e3zB2HhklFJI2T0hIPSUtJQkD54GAwkqnA-OaAtnbeDRRN9No2mEXm14YAGiKz8CnxyaX7xa2plDZQBPYUr_0VpLG616tTTwFeQqJybVNOiLQg-wyi0K8tOgESuG33_4YotJgyHCHjb92X5eOPPl1lfv245cw439_b5f1v7v1-N0Gh_ZYB8oecxnBn7eqcwq08II0I5BWOl41TBWWvJ0X8cApFMtfa1O-tdfQzPncIBXnSGj5eIFeOb9-Jq2Ld26JbFN1UWPQPpsMr-6zkddOVPAe0ZGoPAhiS3lCkdjE5SrSkZGh0gJsoSWNqspTHUd5HJlAFRJXgA2Fc-gCiqSQoQn3WbdclHDAeKKMNsiekgLXGq1SBUmRupwShbiFO2Q9OqHZy1o0Y9YeztHfr4_ZNlmJQEHKE9atljWcItpX-Vlj5k9Itqsk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHvSksom_zcGj3Zo0aZujFMfUbXjYYLeRJqmIs9PZCvrX-15XJ4oHb6WkpOQFvu_9-h4h51ILJoC0eYy72BPcYJLQt55jLjPcKl_bqkB2FPYn4mYqpw1yse6Fcc5VxWeug49VLt8uTImhsq5CsMV-6Q0phJCrbq11RAWYCsrJ1W06zFfd5DKRAVxbcAM569Rf_xijUqFIb5sMv_ZfFY88dsoi7ZiPX9KM__3BHdL-7tejd2sk2iUNl7eITRAAvdcyxVALzVA1AoilpUXFVd2S1hMj7ikGY-lLqfO3-iLqOZ1rIOMUKC0dLsAvp9dPqHbxTg3SbawvqkzaJpPe1Tjpe_VMBe8BXInCc35oMFPIIhPZVEglNQ-EYs5kiuOwqjRWoUxDqX2RcVjhTMCsBSeQRRkPdLBHmvkid_uERkIrDfwpymCtViIWLspim2KqELawB6SFJzR7XslmzOrDOfz79RnZ7I-Hg9ngenR7RLbQYggRnB-TZrEs3Qlgf5GeVib_BGy_rnE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Automation+Congress+%28Online%29&rft.atitle=Cross-subject+federated+transfer+learning+with+quanvolutional+layer+for+Motor+Imagery+classification&rft.au=Hu%2C+Ruihan&rft.au=Zhou%2C+Xuefeng&rft.au=Xu%2C+Zhihao&rft.au=Liao%2C+Zhaoyang&rft.date=2021-10-22&rft.pub=IEEE&rft.eissn=2688-0938&rft.spage=5736&rft.epage=5741&rft_id=info:doi/10.1109%2FCAC53003.2021.9727351&rft.externalDocID=9727351