Cross-subject federated transfer learning with quanvolutional layer for Motor Imagery classification
The Brain-Computer Interface (BCI) systems play an important role in the Rehabilitation therapy, Smart-home, Intelligent Transportation fields. To the best of our knowledge, different from the cross-trial and cross-run tasks, the data privacy of the huge amount of datasets from multiple subjects pre...
        Saved in:
      
    
          | Published in | Chinese Automation Congress (Online) pp. 5736 - 5741 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        22.10.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2688-0938 | 
| DOI | 10.1109/CAC53003.2021.9727351 | 
Cover
| Abstract | The Brain-Computer Interface (BCI) systems play an important role in the Rehabilitation therapy, Smart-home, Intelligent Transportation fields. To the best of our knowledge, different from the cross-trial and cross-run tasks, the data privacy of the huge amount of datasets from multiple subjects prevents the research for the cross-subject transfer learning of the BCI classification task. In this paper, a simple federated transfer framework, namely Federated Transfer Network with Quanvolutional Architecture (FTL-QL), is proposed to overcome this problem. The Riemannian spatial Encoder-Decoder backbone that contains the Quanvolutional and Encoder-Decoder layers to execute the quantum, Manifold Riemannian Coding and Log-Euclidean Riemannian Decoding computation to extract the discriminative information features for cross-subjects' transfer learning. Then the Federated module which calculated by the FederatedAveraging method to train the top layer of the FTL-QL for each subject. The performance of the FTL-QL is benchmarked on the EEG Motor Imagery datasets. Several experiments about the BCI classification task show the proposed FTL-QL can achieve superior learning performance for Cross-subject transfer learning. | 
    
|---|---|
| AbstractList | The Brain-Computer Interface (BCI) systems play an important role in the Rehabilitation therapy, Smart-home, Intelligent Transportation fields. To the best of our knowledge, different from the cross-trial and cross-run tasks, the data privacy of the huge amount of datasets from multiple subjects prevents the research for the cross-subject transfer learning of the BCI classification task. In this paper, a simple federated transfer framework, namely Federated Transfer Network with Quanvolutional Architecture (FTL-QL), is proposed to overcome this problem. The Riemannian spatial Encoder-Decoder backbone that contains the Quanvolutional and Encoder-Decoder layers to execute the quantum, Manifold Riemannian Coding and Log-Euclidean Riemannian Decoding computation to extract the discriminative information features for cross-subjects' transfer learning. Then the Federated module which calculated by the FederatedAveraging method to train the top layer of the FTL-QL for each subject. The performance of the FTL-QL is benchmarked on the EEG Motor Imagery datasets. Several experiments about the BCI classification task show the proposed FTL-QL can achieve superior learning performance for Cross-subject transfer learning. | 
    
| Author | Zhou, Xuefeng Tang, Zhi-Ri Xu, Zhihao Qu, Hongyi Liao, Zhaoyang Hu, Ruihan Wu, Hongmin  | 
    
| Author_xml | – sequence: 1 givenname: Ruihan surname: Hu fullname: Hu, Ruihan email: rh.hu@giim.ac.cn organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China – sequence: 2 givenname: Xuefeng surname: Zhou fullname: Zhou, Xuefeng email: xf.zhou@giim.ac.cn organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China – sequence: 3 givenname: Zhihao surname: Xu fullname: Xu, Zhihao email: zh.xu@giim.ac.cn organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China – sequence: 4 givenname: Zhaoyang surname: Liao fullname: Liao, Zhaoyang email: zy.liao@giim.ac.cn organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China – sequence: 5 givenname: Hongmin surname: Wu fullname: Wu, Hongmin email: hm.wu@giim.ac.cn organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China – sequence: 6 givenname: Hongyi surname: Qu fullname: Qu, Hongyi email: hy.qu@giim.ac.cn organization: Guangdong Academy of Sciences,Guangdong Institute of Intelligent Manufacturing,Guangzhou,China – sequence: 7 givenname: Zhi-Ri surname: Tang fullname: Tang, Zhi-Ri email: gerintang@163.com organization: Wuhan University,School of Physics and Technology,Wuhan,China  | 
    
| BookMark | eNotkM1KAzEYRaMo2NY-gQh5gan5z2RZBq2Fihtdl0zmS02ZZjRJlb69I3Zz7-ZwuNwpuopDBITuKVlQSsxDs2wkJ4QvGGF0YTTTXNILNKVKScGU0OQSTZiq64oYXt-gec57QgjjVEhBJqhr0pBzlY_tHlzBHjpItkCHS7Ixe0i4B5tiiDv8E8oH_jra-D30xxKGaHvc29OI-CHhl6GMuT7YHaQTdr3NOfjg7B94i6697TPMzz1D70-Pb81ztXldrZvlpgqU1qUCoty4W1HtdNcKaaRlXBgKzhvGqGZtbZRslbREeDYS4DjtOmIE1Z5xy2fo7t8bAGD7mcLBptP2fAr_BZ7aWd8 | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/CAC53003.2021.9727351 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès ENAC - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 1665426470 9781665426473  | 
    
| EISSN | 2688-0938 | 
    
| EndPage | 5741 | 
    
| ExternalDocumentID | 9727351 | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Technology Development funderid: 10.13039/100006180 – fundername: Xinjiang Production and Construction Corps funderid: 10.13039/501100009967 – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Ministry of Education funderid: 10.13039/100010002 – fundername: Guangdong Academy of Sciences funderid: 10.13039/501100009075  | 
    
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i118t-e06c166617c7db4595a23491ecf922172b8965b65a04f2db4ec31dd09417f23a3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:47:40 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i118t-e06c166617c7db4595a23491ecf922172b8965b65a04f2db4ec31dd09417f23a3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_9727351 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-Oct.-22 | 
    
| PublicationDateYYYYMMDD | 2021-10-22 | 
    
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-22 day: 22  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Chinese Automation Congress (Online) | 
    
| PublicationTitleAbbrev | CAC | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0002314540 | 
    
| Score | 1.825173 | 
    
| Snippet | The Brain-Computer Interface (BCI) systems play an important role in the Rehabilitation therapy, Smart-home, Intelligent Transportation fields. To the best of... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 5736 | 
    
| SubjectTerms | Cross-subject transfer learning Encoding Feature extraction FederatedAveraging Manifolds Medical treatment Quantum computing The Riemannian spatial Encoder-Decoder backbone Transfer learning Transportation  | 
    
| Title | Cross-subject federated transfer learning with quanvolutional layer for Motor Imagery classification | 
    
| URI | https://ieeexplore.ieee.org/document/9727351 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT55UWvHNHjyaNLvZPPYowVKFigcLvZXN7kTEmmqbCPrrnUljRfHgLYQNG3YWvm9e3zB2HhklFJI2T0hIPSUtJQkD54GAwkqnA-OaAtnbeDRRN9No2mEXm14YAGiKz8CnxyaX7xa2plDZQBPYUr_0VpLG616tTTwFeQqJybVNOiLQg-wyi0K8tOgESuG33_4YotJgyHCHjb92X5eOPPl1lfv245cw439_b5f1v7v1-N0Gh_ZYB8oecxnBn7eqcwq08II0I5BWOl41TBWWvJ0X8cApFMtfa1O-tdfQzPncIBXnSGj5eIFeOb9-Jq2Ld26JbFN1UWPQPpsMr-6zkddOVPAe0ZGoPAhiS3lCkdjE5SrSkZGh0gJsoSWNqspTHUd5HJlAFRJXgA2Fc-gCiqSQoQn3WbdclHDAeKKMNsiekgLXGq1SBUmRupwShbiFO2Q9OqHZy1o0Y9YeztHfr4_ZNlmJQEHKE9atljWcItpX-Vlj5k9Itqsk | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHvSksom_zcGj3Zo0aZujFMfUbXjYYLeRJqmIs9PZCvrX-15XJ4oHb6WkpOQFvu_9-h4h51ILJoC0eYy72BPcYJLQt55jLjPcKl_bqkB2FPYn4mYqpw1yse6Fcc5VxWeug49VLt8uTImhsq5CsMV-6Q0phJCrbq11RAWYCsrJ1W06zFfd5DKRAVxbcAM569Rf_xijUqFIb5sMv_ZfFY88dsoi7ZiPX9KM__3BHdL-7tejd2sk2iUNl7eITRAAvdcyxVALzVA1AoilpUXFVd2S1hMj7ikGY-lLqfO3-iLqOZ1rIOMUKC0dLsAvp9dPqHbxTg3SbawvqkzaJpPe1Tjpe_VMBe8BXInCc35oMFPIIhPZVEglNQ-EYs5kiuOwqjRWoUxDqX2RcVjhTMCsBSeQRRkPdLBHmvkid_uERkIrDfwpymCtViIWLspim2KqELawB6SFJzR7XslmzOrDOfz79RnZ7I-Hg9ngenR7RLbQYggRnB-TZrEs3Qlgf5GeVib_BGy_rnE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Automation+Congress+%28Online%29&rft.atitle=Cross-subject+federated+transfer+learning+with+quanvolutional+layer+for+Motor+Imagery+classification&rft.au=Hu%2C+Ruihan&rft.au=Zhou%2C+Xuefeng&rft.au=Xu%2C+Zhihao&rft.au=Liao%2C+Zhaoyang&rft.date=2021-10-22&rft.pub=IEEE&rft.eissn=2688-0938&rft.spage=5736&rft.epage=5741&rft_id=info:doi/10.1109%2FCAC53003.2021.9727351&rft.externalDocID=9727351 |