Deep Q-learning Enabled Wireless Resource Allocation for 5G Network Based Vehicle-to-vehicle Communications

Vehicle-to-vehicle (V2V) communication, a facilitator of intelligent transportation system (ITS), requires effective cooperation among vehicles in vehicular environment. The major challenge of V2V communication lies in reliable transmission and cooperation under latency conditions. This paper invest...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) pp. 903 - 907
Main Authors Wang, Shumo, Chai, Xinyue, Song, Xiaoqin, Liang, Xin
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.10.2021
Subjects
Online AccessGet full text
DOI10.1109/ICSIP52628.2021.9689007

Cover

Abstract Vehicle-to-vehicle (V2V) communication, a facilitator of intelligent transportation system (ITS), requires effective cooperation among vehicles in vehicular environment. The major challenge of V2V communication lies in reliable transmission and cooperation under latency conditions. This paper investigates the wireless resource allocation of 5G network based V2V communication. Network slicing is a key technology proposed in 5G network, which is used as a feature of the system model in our paper. V2V links and vehicle-to-infrastructure (V2I) links should access to different network slices. In the wireless resource allocation, it is hard to formulate the reliable transmission and latency constraints into the optimization problems. To address this problem, we use deep Q-learning to handle the resource allocation. In our framework, each V2V link is regarded as an agent. Through proper reward design and training mechanism, V2V agents successfully learn to select the sub-channel and transmission power based on the local observations. The simulation results show each V2V link can effectively satisfy the successful transmission of the message while maximizing the capacity of all V2V links.
AbstractList Vehicle-to-vehicle (V2V) communication, a facilitator of intelligent transportation system (ITS), requires effective cooperation among vehicles in vehicular environment. The major challenge of V2V communication lies in reliable transmission and cooperation under latency conditions. This paper investigates the wireless resource allocation of 5G network based V2V communication. Network slicing is a key technology proposed in 5G network, which is used as a feature of the system model in our paper. V2V links and vehicle-to-infrastructure (V2I) links should access to different network slices. In the wireless resource allocation, it is hard to formulate the reliable transmission and latency constraints into the optimization problems. To address this problem, we use deep Q-learning to handle the resource allocation. In our framework, each V2V link is regarded as an agent. Through proper reward design and training mechanism, V2V agents successfully learn to select the sub-channel and transmission power based on the local observations. The simulation results show each V2V link can effectively satisfy the successful transmission of the message while maximizing the capacity of all V2V links.
Author Chai, Xinyue
Liang, Xin
Wang, Shumo
Song, Xiaoqin
Author_xml – sequence: 1
  givenname: Shumo
  surname: Wang
  fullname: Wang, Shumo
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing,China
– sequence: 2
  givenname: Xinyue
  surname: Chai
  fullname: Chai, Xinyue
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing,China
– sequence: 3
  givenname: Xiaoqin
  surname: Song
  fullname: Song, Xiaoqin
  email: xiaoqin.song@163.com
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing,China
– sequence: 4
  givenname: Xin
  surname: Liang
  fullname: Liang, Xin
  organization: NanJing Institute of Mechatronic Technology,Nanjing,China
BookMark eNotkLtOwzAYRo0EA5Q-AQN-ARffE48llBKp4n4ZK9f5A1Ydu3JSEG8PUjqdbznfcM7QcUwRELpkdMYYNVd19VI_Kq55OeOUs5nRpaG0OEJTU5RMayWFoVKfou0NwA4_kQA2Rx8_8SLaTYAGf_gMAfoeP0Of9tkBnoeQnB18irhNGaslvofhJ-Utvrb9v_EOX94FIEMi3-PEVeq6ffSj1Z-jk9aGHqYHTtDb7eK1uiOrh2VdzVfEM1YOpGmdgIY2FiRrpQJtnNQFSKsE2whrWyUZ50aC5YI2rpDcSVFqKgqtC8tBTNDF-OsBYL3LvrP5d31IIP4AgOpXPw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSIP52628.2021.9689007
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665439046
1665439041
EndPage 907
ExternalDocumentID 9689007
Genre orig-research
GrantInformation_xml – fundername: Center for Strategic Research
  funderid: 10.13039/100010454
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-dfc3ed0dae41f45e69c467e4a531b3aaf5412294ea230dc742c4386037667a2e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-dfc3ed0dae41f45e69c467e4a531b3aaf5412294ea230dc742c4386037667a2e3
PageCount 5
ParticipantIDs ieee_primary_9689007
PublicationCentury 2000
PublicationDate 2021-Oct.-22
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP)
PublicationTitleAbbrev ICSIP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8052163
Snippet Vehicle-to-vehicle (V2V) communication, a facilitator of intelligent transportation system (ITS), requires effective cooperation among vehicles in vehicular...
SourceID ieee
SourceType Publisher
StartPage 903
SubjectTerms 5G mobile communication
deep Q-learning
Heuristic algorithms
low latency
Network slicing
Q-learning
reliable transmission
resource allocation
Training
Vehicle-to-infrastructure
vehicular communications
Wireless communication
Title Deep Q-learning Enabled Wireless Resource Allocation for 5G Network Based Vehicle-to-vehicle Communications
URI https://ieeexplore.ieee.org/document/9689007
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Qkyc1YPxODx7t2Lp2H0dFEEwgGMVwI_14VQNhRIcH_3rbbWAwHrw1y5Yufev77b3-fu8hdBlKLgxVkiSCMRugSENE4gohW-zXIRWBAJfQHwyj3pjdT_ikhq42WhgAKMhn4LlhcZavM7VyqbJWGiVpIR3fiZOo1GpVlK3AT1v99mN_xGlEHWOLBl5191bblAI1untosJ6vJIvMvFUuPfX1qxTjf19oHzV_9Hl4tEGeA1SDRQPNbgGW-IFUfSBecKeQRWnsCK5z69DwOlWPr-cOwpxJsP1nxfwOD0s2OL6xoKbxM7y6z4nkGfksh3hLSPLRRONu56ndI1UrBfJmI4icaKNC0L4WwALDOESpsh4SmLBbUIZCGM4CSlMGwoYkWtl4WbEwiXzrfqJYUAgPUX2RLeAIYZ8aUNLGhSoBRk0sY19o-yQXYWBUkByjhluo6bKsljGt1ujk78unaNcZy6EBpWeonr-v4NzCfC4vCvt-A120qrM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjha1rx3ZUBEGBYATDjfTHqxoIEB0e_Ottt4HBePDWLFu69K3v23v9vvcQugwkF4YqSSLBmA1QpCEicoWQLfbrgApfgEvod3tha8juR3xUQFdrLQwApOQzqLhhepav52rpUmXVOIziVDq-xRljPFNr5aQt34ur7fpTu89pSB1ni_qV_P6NxikpbjR3UXc1Y0YXmVSWiayor1_FGP_7Snuo_KPQw_019uyjAsxKaHILsMCPJO8E8YIbqTBKY0dxnVqXhlfJenw9dSDmjILtXyvmd7iX8cHxjYU1jZ_h1X1QJJmTz2yIN6QkH2U0bDYG9RbJmymQNxtDJEQbFYD2tADmG8YhjJX1kcCE3YQyEMJw5lMaMxA2KNHKRsyKBVHoWQcU1gSF4AAVZ_MZHCLsUQNK2shQRcCoqcmaJ7R9kovAN8qPjlDJLdR4kdXLGOdrdPz35Qu03Rp0O-NOu_dwgnac4Rw2UHqKisn7Es4s6CfyPLX1N3pIrgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+6th+International+Conference+on+Signal+and+Image+Processing+%28ICSIP%29&rft.atitle=Deep+Q-learning+Enabled+Wireless+Resource+Allocation+for+5G+Network+Based+Vehicle-to-vehicle+Communications&rft.au=Wang%2C+Shumo&rft.au=Chai%2C+Xinyue&rft.au=Song%2C+Xiaoqin&rft.au=Liang%2C+Xin&rft.date=2021-10-22&rft.pub=IEEE&rft.spage=903&rft.epage=907&rft_id=info:doi/10.1109%2FICSIP52628.2021.9689007&rft.externalDocID=9689007