Deep Learning Enhanced BCI Technology for 3D Printing

The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets...

Full description

Saved in:
Bibliographic Details
Published in2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) pp. 0125 - 0130
Main Authors Kachhia, Jahnavi, Natharani, Rashika, George, Kiran
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.10.2020
Subjects
Online AccessGet full text
DOI10.1109/UEMCON51285.2020.9298124

Cover

Abstract The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets and perform a mental imagery task. These collected brain waves are preprocessed using MATLAB and then are used to train different Neural Network architectures. The Neural Network model recognizes patterns in these brain waves to predict the shape imagined by the user. In this paper, we introduce CNN-LSTM that servers the purpose of classifying objects accurately. Once the shape is identified, the CAD file is generated in STL format using the predefined size. Lastly, this STL file is converted into G-code and serially transferred to the 3D Printer.
AbstractList The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets and perform a mental imagery task. These collected brain waves are preprocessed using MATLAB and then are used to train different Neural Network architectures. The Neural Network model recognizes patterns in these brain waves to predict the shape imagined by the user. In this paper, we introduce CNN-LSTM that servers the purpose of classifying objects accurately. Once the shape is identified, the CAD file is generated in STL format using the predefined size. Lastly, this STL file is converted into G-code and serially transferred to the 3D Printer.
Author Natharani, Rashika
Kachhia, Jahnavi
George, Kiran
Author_xml – sequence: 1
  givenname: Jahnavi
  surname: Kachhia
  fullname: Kachhia, Jahnavi
  email: jahnavikachhia@csu.fullerton.edu
  organization: California State University, Fullerton,Department of Computer Engineering,Fullerton,California
– sequence: 2
  givenname: Rashika
  surname: Natharani
  fullname: Natharani, Rashika
  email: rashika.natharani@csu.fullerton.edu
  organization: California State University, Fullerton,Department of Computer Science,Fullerton,California
– sequence: 3
  givenname: Kiran
  surname: George
  fullname: George, Kiran
  email: kgeorge@fullerton.edu
  organization: California State University, Fullerton,Department of Computer Engineering,Fullerton,California
BookMark eNotj8tOAjEUQGsiC0W-wE1_YMbelttplzqMSjIKC1iTPm5hEuyQyoa_l0RWZ3NykvPI7vOYiTEOogYQ9mXbfbWrbwRpsJZCitpKa0DO79jMNgYaacBq1PjAcEF04j25koe8510-uBwo8rd2yTcUDnk8jvsLT2PhasHXZcjnq_fEJskdf2l245Rt37tN-1n1q49l-9pXA4A5VzEKcmnuAxqJLnidCLy3RsWECmVQjUalIV4NpQ2ZGKwHGxXZGJNEUFP2_N8diGh3KsOPK5fdbUb9AWz-Q84
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/UEMCON51285.2020.9298124
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728196565
1728196566
EndPage 0130
ExternalDocumentID 9298124
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-dd0eaf4bc5825acb6fe1bb983df5352c3765361d4bc368e8dc9b19d3e9ddf2513
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:20 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-dd0eaf4bc5825acb6fe1bb983df5352c3765361d4bc368e8dc9b19d3e9ddf2513
PageCount 6
ParticipantIDs ieee_primary_9298124
PublicationCentury 2000
PublicationDate 2020-Oct.-28
PublicationDateYYYYMMDD 2020-10-28
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)
PublicationTitleAbbrev UEMCON
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7431955
Snippet The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will...
SourceID ieee
SourceType Publisher
StartPage 0125
SubjectTerms 3D printing
Brain modeling
convolutional neural network (CNN)
Data models
deep learning
EEG signals
Electroencephalography
long short-term memory (LSTM)
mental imagery
recurrent neural network (RNN)
Shape
Solid modeling
Three-dimensional displays
Training
Title Deep Learning Enhanced BCI Technology for 3D Printing
URI https://ieeexplore.ieee.org/document/9298124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG6Akyc1YNzTg0c7dKbTYXqVJWgCepCEG-nyqsRkIGa4-Ot9HQaIxoO3punept_bHyF3FrxUuXdMcJuytGczppOeZ9oo4wxo3dNB3jGZZuNZ-jSX8wa53_vCAEBlfAZRKFa6fLeymyAq6yKUBzxqkiY-s62v1s44h6vubDjpP08RwHKJfF_Co7r5j7wpFWyMjslkN-HWWuQj2pQmsl-_YjH-d0UnpHNw0KMve-g5JQ0o2kQOANa0Dpj6RofFe6Xdpw_9R3qQoFOkUqkYYPdllSSiQ2aj4Wt_zOqsCGyJzEDJnOOgfWqsROZOW5N5iI1RuXA-hGqx-GNIkcUOW4gsh9xZZWLlBCjnPFIz4oy0ilUB54RyDt4jjZVop1KpjeYGvI6NxTPE4cUFaYctL9bbwBeLereXf1dfkaNw7OFjT_Jr0io_N3CDiF2a2-qqvgFeTJho
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSkBoxve_DoLrvb7bK9ChhQFj1Awo30MVVishCzXPz1tssC0Xjw1jSdvibpNzOdB8CdQsN4arRHAxV7cVslnojaxhOSSy1RiLZw9o5slPQn8dOUTWtwv42FQcTS-Qx91yz_8vVCrZyprGWh3OHRHuwzq1Wk62itjXtOwFuTXtZ5GVkIS5nV_KLArwh-VE4pgePxCLLNkmt_kQ9_VUhfff3KxvjfPR1DcxeiR1634HMCNcwbwLqIS1KlTH0jvfy9_N8nD50B2dnQiZVTCe1a8nlZJqIJk8feuNP3qroI3tyqA4WndYDCxFIxq94JJRODoZQ8pdq4ZC3KvhmMJqG2I2iSYqoVlyHXFLnWxsoz9BTq-SLHMyBBgMZYKSsSmsdMSBFINCKUyt6hnZ6eQ8MdebZcp76YVae9-Lv7Fg7642w4Gw5Gz5dw6FjgnvkovYJ68bnCa4vfhbwp2fYNlySbuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+11th+IEEE+Annual+Ubiquitous+Computing%2C+Electronics+%26+Mobile+Communication+Conference+%28UEMCON%29&rft.atitle=Deep+Learning+Enhanced+BCI+Technology+for+3D+Printing&rft.au=Kachhia%2C+Jahnavi&rft.au=Natharani%2C+Rashika&rft.au=George%2C+Kiran&rft.date=2020-10-28&rft.pub=IEEE&rft.spage=0125&rft.epage=0130&rft_id=info:doi/10.1109%2FUEMCON51285.2020.9298124&rft.externalDocID=9298124