Deep Learning Enhanced BCI Technology for 3D Printing
The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets...
Saved in:
Published in | 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) pp. 0125 - 0130 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
28.10.2020
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/UEMCON51285.2020.9298124 |
Cover
Abstract | The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets and perform a mental imagery task. These collected brain waves are preprocessed using MATLAB and then are used to train different Neural Network architectures. The Neural Network model recognizes patterns in these brain waves to predict the shape imagined by the user. In this paper, we introduce CNN-LSTM that servers the purpose of classifying objects accurately. Once the shape is identified, the CAD file is generated in STL format using the predefined size. Lastly, this STL file is converted into G-code and serially transferred to the 3D Printer. |
---|---|
AbstractList | The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets and perform a mental imagery task. These collected brain waves are preprocessed using MATLAB and then are used to train different Neural Network architectures. The Neural Network model recognizes patterns in these brain waves to predict the shape imagined by the user. In this paper, we introduce CNN-LSTM that servers the purpose of classifying objects accurately. Once the shape is identified, the CAD file is generated in STL format using the predefined size. Lastly, this STL file is converted into G-code and serially transferred to the 3D Printer. |
Author | Natharani, Rashika Kachhia, Jahnavi George, Kiran |
Author_xml | – sequence: 1 givenname: Jahnavi surname: Kachhia fullname: Kachhia, Jahnavi email: jahnavikachhia@csu.fullerton.edu organization: California State University, Fullerton,Department of Computer Engineering,Fullerton,California – sequence: 2 givenname: Rashika surname: Natharani fullname: Natharani, Rashika email: rashika.natharani@csu.fullerton.edu organization: California State University, Fullerton,Department of Computer Science,Fullerton,California – sequence: 3 givenname: Kiran surname: George fullname: George, Kiran email: kgeorge@fullerton.edu organization: California State University, Fullerton,Department of Computer Engineering,Fullerton,California |
BookMark | eNotj8tOAjEUQGsiC0W-wE1_YMbelttplzqMSjIKC1iTPm5hEuyQyoa_l0RWZ3NykvPI7vOYiTEOogYQ9mXbfbWrbwRpsJZCitpKa0DO79jMNgYaacBq1PjAcEF04j25koe8510-uBwo8rd2yTcUDnk8jvsLT2PhasHXZcjnq_fEJskdf2l245Rt37tN-1n1q49l-9pXA4A5VzEKcmnuAxqJLnidCLy3RsWECmVQjUalIV4NpQ2ZGKwHGxXZGJNEUFP2_N8diGh3KsOPK5fdbUb9AWz-Q84 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/UEMCON51285.2020.9298124 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728196565 1728196566 |
EndPage | 0130 |
ExternalDocumentID | 9298124 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-dd0eaf4bc5825acb6fe1bb983df5352c3765361d4bc368e8dc9b19d3e9ddf2513 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:20 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-dd0eaf4bc5825acb6fe1bb983df5352c3765361d4bc368e8dc9b19d3e9ddf2513 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9298124 |
PublicationCentury | 2000 |
PublicationDate | 2020-Oct.-28 |
PublicationDateYYYYMMDD | 2020-10-28 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct.-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) |
PublicationTitleAbbrev | UEMCON |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7431955 |
Snippet | The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 0125 |
SubjectTerms | 3D printing Brain modeling convolutional neural network (CNN) Data models deep learning EEG signals Electroencephalography long short-term memory (LSTM) mental imagery recurrent neural network (RNN) Shape Solid modeling Three-dimensional displays Training |
Title | Deep Learning Enhanced BCI Technology for 3D Printing |
URI | https://ieeexplore.ieee.org/document/9298124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG6Akyc1YNzTg0c7dKbTYXqVJWgCepCEG-nyqsRkIGa4-Ot9HQaIxoO3punept_bHyF3FrxUuXdMcJuytGczppOeZ9oo4wxo3dNB3jGZZuNZ-jSX8wa53_vCAEBlfAZRKFa6fLeymyAq6yKUBzxqkiY-s62v1s44h6vubDjpP08RwHKJfF_Co7r5j7wpFWyMjslkN-HWWuQj2pQmsl-_YjH-d0UnpHNw0KMve-g5JQ0o2kQOANa0Dpj6RofFe6Xdpw_9R3qQoFOkUqkYYPdllSSiQ2aj4Wt_zOqsCGyJzEDJnOOgfWqsROZOW5N5iI1RuXA-hGqx-GNIkcUOW4gsh9xZZWLlBCjnPFIz4oy0ilUB54RyDt4jjZVop1KpjeYGvI6NxTPE4cUFaYctL9bbwBeLereXf1dfkaNw7OFjT_Jr0io_N3CDiF2a2-qqvgFeTJho |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSkBoxve_DoLrvb7bK9ChhQFj1Awo30MVVishCzXPz1tssC0Xjw1jSdvibpNzOdB8CdQsN4arRHAxV7cVslnojaxhOSSy1RiLZw9o5slPQn8dOUTWtwv42FQcTS-Qx91yz_8vVCrZyprGWh3OHRHuwzq1Wk62itjXtOwFuTXtZ5GVkIS5nV_KLArwh-VE4pgePxCLLNkmt_kQ9_VUhfff3KxvjfPR1DcxeiR1634HMCNcwbwLqIS1KlTH0jvfy9_N8nD50B2dnQiZVTCe1a8nlZJqIJk8feuNP3qroI3tyqA4WndYDCxFIxq94JJRODoZQ8pdq4ZC3KvhmMJqG2I2iSYqoVlyHXFLnWxsoz9BTq-SLHMyBBgMZYKSsSmsdMSBFINCKUyt6hnZ6eQ8MdebZcp76YVae9-Lv7Fg7642w4Gw5Gz5dw6FjgnvkovYJ68bnCa4vfhbwp2fYNlySbuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+11th+IEEE+Annual+Ubiquitous+Computing%2C+Electronics+%26+Mobile+Communication+Conference+%28UEMCON%29&rft.atitle=Deep+Learning+Enhanced+BCI+Technology+for+3D+Printing&rft.au=Kachhia%2C+Jahnavi&rft.au=Natharani%2C+Rashika&rft.au=George%2C+Kiran&rft.date=2020-10-28&rft.pub=IEEE&rft.spage=0125&rft.epage=0130&rft_id=info:doi/10.1109%2FUEMCON51285.2020.9298124&rft.externalDocID=9298124 |