Feature-aided Multi-Target Tracking Method in Sea Clutter Using Scanning Radar Data

Maritime multi-target tracking (MTT) is an important application scenario of radar target tracking technology, but it still faces huge challenges such as the interference of sea clutter and the fluctuation of target echoes, which leading to the trajectory fragmentation. Additionally, due to radar sc...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) pp. 615 - 619
Main Authors Zhu, Yingpei, Wang, Zhen, Yin, Yupei, Chen, Weidong
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.10.2021
Subjects
Online AccessGet full text
DOI10.1109/ICSIP52628.2021.9688716

Cover

Abstract Maritime multi-target tracking (MTT) is an important application scenario of radar target tracking technology, but it still faces huge challenges such as the interference of sea clutter and the fluctuation of target echoes, which leading to the trajectory fragmentation. Additionally, due to radar scanning, targets are extended in azimuth and cannot be regarded as point targets. In this paper, we construct the feature vector by combining the radar echo data with the extension estimation of targets obtained by gamma Gaussian inverse Wishart-probability hypothesis density (GGIW-PHD) filter. Then, the echo features of targets are introduced into MHT framework and trajectory management module, aiming to reduce trajectory fragmentation and improve the integrity of target trajectory. Finally, the effectiveness of the proposed method is verified by measured data.
AbstractList Maritime multi-target tracking (MTT) is an important application scenario of radar target tracking technology, but it still faces huge challenges such as the interference of sea clutter and the fluctuation of target echoes, which leading to the trajectory fragmentation. Additionally, due to radar scanning, targets are extended in azimuth and cannot be regarded as point targets. In this paper, we construct the feature vector by combining the radar echo data with the extension estimation of targets obtained by gamma Gaussian inverse Wishart-probability hypothesis density (GGIW-PHD) filter. Then, the echo features of targets are introduced into MHT framework and trajectory management module, aiming to reduce trajectory fragmentation and improve the integrity of target trajectory. Finally, the effectiveness of the proposed method is verified by measured data.
Author Yin, Yupei
Chen, Weidong
Zhu, Yingpei
Wang, Zhen
Author_xml – sequence: 1
  givenname: Yingpei
  surname: Zhu
  fullname: Zhu, Yingpei
  email: yingpzhu@mail.ustc.edu.cn
  organization: University of Science and Technology of China,Department of EEIS,Hefei,P.R.China
– sequence: 2
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  email: wazh0821@mail.ustc.edu.cn
  organization: University of Science and Technology of China,Department of EEIS,Hefei,P.R.China
– sequence: 3
  givenname: Yupei
  surname: Yin
  fullname: Yin, Yupei
  email: ypyin@mail.ustc.edu.cn
  organization: University of Science and Technology of China,Department of EEIS,Hefei,P.R.China
– sequence: 4
  givenname: Weidong
  surname: Chen
  fullname: Chen, Weidong
  email: wdchen@ustc.edu.cn
  organization: University of Science and Technology of China,Department of EEIS,Hefei,P.R.China
BookMark eNotj8tOwzAURI0ECyj9Ahb4BxJsx88lChQitQKRdF1dnJtiEVzkOgv-HkXtauZopCPNDbmMh4iE3HNWcs7cQ1O3zbsSWthSMMFLp601XF-QpTOWa61k5ZjU16RdIeQpYQGhx55upjGHooO0x0y7BP47xD3dYP469DRE2iLQepxyxkS3x3lrPcQ4lw_oIdEnyHBLrgYYj7g854JsV89d_Vqs316a-nFdBM5tLnorOWNeGuOcUwMH5YzSwDU67Qaj_MBxQPTi0xg5g3FolERmhdXeumpB7k7egIi73xR-IP3tzlerfw4wTZs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSIP52628.2021.9688716
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665439046
1665439041
EndPage 619
ExternalDocumentID 9688716
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-d84100c4779995f1a59756a16e969f75cf1efeec2b774cf1e79e754e08286c893
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-d84100c4779995f1a59756a16e969f75cf1efeec2b774cf1e79e754e08286c893
PageCount 5
ParticipantIDs ieee_primary_9688716
PublicationCentury 2000
PublicationDate 2021-Oct.-22
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP)
PublicationTitleAbbrev ICSIP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8119223
Snippet Maritime multi-target tracking (MTT) is an important application scenario of radar target tracking technology, but it still faces huge challenges such as the...
SourceID ieee
SourceType Publisher
StartPage 615
SubjectTerms extended target tracking (ETT)
Fluctuations
gamma Gaussian inverse Wishart-probability hypothesis density (GGIW-PHD)
multiple target tracking (MTT)
Radar
Radar clutter
Radar measurements
Radar tracking
scanning radar data
Sea measurements
Target tracking
Title Feature-aided Multi-Target Tracking Method in Sea Clutter Using Scanning Radar Data
URI https://ieeexplore.ieee.org/document/9688716
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA3bTp5UNvE3OXg0XVvTpDlPxyZMht1gt5EfX2AonYz2sr_eJK0TxYO3tBRa8jV5L8n7vofQXc6YyllsiGsIQrlxY05p9y9rHgsDXOcqCGRf2GRJn1fZqoPuD7kwABDEZxD5ZjjLN1td-62yoWC55_dd1OU5a3K1WslWEovhdFRM51nKUq_YSpOoffqHbUpAjfExmn29rxGLvEV1pSK9_1WK8b8fdIIG3_l5eH5AnlPUgbKPCs_m6h0QX_TR4JBZSxZB6I0dImm_J45nwTAab0pcgMSj92BTjYNuABe68S_Cr9LIHX6UlRyg5fhpMZqQ1jKBbNxKoSImp0kca8q5I36ZTaRbL2RMJgwEE5Zn2iZgAXSqHO3zF1wAzyj4QnZMO-5yhnrltoRzhB-YsbkBpaxOqbSJcmGTkmbCWu0wXlygvu-Q9UdTFWPd9sXl37ev0JEPip_10_Qa9apdDTcOzit1G-L4CbbfoZ8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zHvSksom_zcGj7dqapM15OjbdxrAb7Dby4wuI0sloL_71JmmdKB68pSHQki_lvSTv-x5CNxljMmORDmyDByTV9p-Tyq5llUZcQ6oy6QWyUzZckMclXbbQ7TYXBgC8-AxC1_R3-XqtKndU1uMsc_x-B-1SQgits7Ua0VYc8d6on49mNGGJ02wlcdiM_2Gc4nFjcIAmX2-s5SKvYVXKUH38Ksb43086RN3vDD0822LPEWpB0UG543PVBgJX9lFjn1sbzL3UG1tMUu5UHE-8ZTR-KXAOAvffvFE19soBnKvawQg_Cy02-F6UoosWg4d5fxg0pgnBi90rlIHOSBxFiqSppX7UxMLuGCgTMQPOuEmpMjEYAJVIS_zcQ8ohpQRcKTumLHs5Ru1iXcAJwndMm0yDlEYlRJhY2sAJQSg3RlmU56eo4yZk9V7XxVg1c3H2d_c12hvOJ-PVeDR9Okf7LkAOA5LkArXLTQWXFtxLeeVj-glcqaTs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+6th+International+Conference+on+Signal+and+Image+Processing+%28ICSIP%29&rft.atitle=Feature-aided+Multi-Target+Tracking+Method+in+Sea+Clutter+Using+Scanning+Radar+Data&rft.au=Zhu%2C+Yingpei&rft.au=Wang%2C+Zhen&rft.au=Yin%2C+Yupei&rft.au=Chen%2C+Weidong&rft.date=2021-10-22&rft.pub=IEEE&rft.spage=615&rft.epage=619&rft_id=info:doi/10.1109%2FICSIP52628.2021.9688716&rft.externalDocID=9688716