Real-time Litter Recognition Using Improved YOLOv4 Tiny Algorithm

Littered roads have become a familiar sight in India. The main reason is the increasing population and inefficient waste disposal system. Since garbage collectors cannot pick litter in all the places, there is a need for an efficient way to detect it. Hence, a machine learning-based object detection...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon) pp. 1 - 5
Main Authors V, Shalini, Tangade, Shrikant, K, Prajna P, J P, Sangeetha, Azam, Farooque, L, Anoop G
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.10.2022
Subjects
Online AccessGet full text
DOI10.1109/MysuruCon55714.2022.9972356

Cover

Abstract Littered roads have become a familiar sight in India. The main reason is the increasing population and inefficient waste disposal system. Since garbage collectors cannot pick litter in all the places, there is a need for an efficient way to detect it. Hence, a machine learning-based object detection model is used. In this, we have applied an improved YOLOv4-Tiny algorithm to detect the garbage, classify it and make the detection process easier on custom datasets. We have improved the algorithm in terms of the object prediction time, this is done by replacing a max pooling layer with one of two layers present in a fully connected layer. When an input is given, the algorithm detects the litter in the image with a bounding box around it along with the label and confidence score. The proposed model reduces the prediction time by 0.517 milliseconds less than the original algorithm employed which concludes that the object is predicted faster.
AbstractList Littered roads have become a familiar sight in India. The main reason is the increasing population and inefficient waste disposal system. Since garbage collectors cannot pick litter in all the places, there is a need for an efficient way to detect it. Hence, a machine learning-based object detection model is used. In this, we have applied an improved YOLOv4-Tiny algorithm to detect the garbage, classify it and make the detection process easier on custom datasets. We have improved the algorithm in terms of the object prediction time, this is done by replacing a max pooling layer with one of two layers present in a fully connected layer. When an input is given, the algorithm detects the litter in the image with a bounding box around it along with the label and confidence score. The proposed model reduces the prediction time by 0.517 milliseconds less than the original algorithm employed which concludes that the object is predicted faster.
Author V, Shalini
L, Anoop G
Tangade, Shrikant
K, Prajna P
Azam, Farooque
J P, Sangeetha
Author_xml – sequence: 1
  givenname: Shalini
  surname: V
  fullname: V, Shalini
  email: shalvanith@gmail.com
  organization: REVA University,School of Electronics and Commn. Engg,Bangalore,India
– sequence: 2
  givenname: Shrikant
  surname: Tangade
  fullname: Tangade, Shrikant
  email: shrikantsubhash.tangade@christuniversity.in
  organization: CHRIST (Deemed to be University),Dept. of CSE,Bangalore,India
– sequence: 3
  givenname: Prajna P
  surname: K
  fullname: K, Prajna P
  email: prajnapk2001@gmail.com
  organization: REVA University,School of Electronics and Commn. Engg,Bangalore,India
– sequence: 4
  givenname: Sangeetha
  surname: J P
  fullname: J P, Sangeetha
  email: jairajpatil1975@gmail.com
  organization: REVA University,School of Electronics and Commn. Engg,Bangalore,India
– sequence: 5
  givenname: Farooque
  surname: Azam
  fullname: Azam, Farooque
  email: farooque53786@gmail.com
  organization: REVA University,School of Electronics and Commn. Engg,Bangalore,India
– sequence: 6
  givenname: Anoop G
  surname: L
  fullname: L, Anoop G
  email: gl.anoop1@gmail.com
  organization: CHRIST (Deemed to be University),Dept. of CSE,Bangalore,India
BookMark eNotj7tqwzAUQFVohzbNF3QRdLbrq4cljcb0EXAwhGToFBz72hXYUpCVgP--hWY62-GcJ3LvvENCXiFLATLztl3mS7iU3kmpQKQsYyw1RjEu8zuyNkpDnkthlMnMIyl22IxJtBPSysaIge6w9YOz0XpHD7N1A91M5-Cv2NHvuqqvgu6tW2gxDj7Y-DM9k4e-GWdc37gih4_3ffmVVPXnpiyqxALomHQ5V600nHMpWmaM7k4aehBSaM4ATd-iNI3mfa5YBshOrIO_ciW5kBJYw1fk5d9rEfF4DnZqwnK8jfFfGw5IjA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MysuruCon55714.2022.9972356
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665497909
1665497904
EndPage 5
ExternalDocumentID 9972356
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-d637c5933354c2998db81f14548321e9fce59a83f67201e2b2d102275345512a3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:34 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-d637c5933354c2998db81f14548321e9fce59a83f67201e2b2d102275345512a3
PageCount 5
ParticipantIDs ieee_primary_9972356
PublicationCentury 2000
PublicationDate 2022-Oct.-16
PublicationDateYYYYMMDD 2022-10-16
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon)
PublicationTitleAbbrev MysuruCon
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8129468
Snippet Littered roads have become a familiar sight in India. The main reason is the increasing population and inefficient waste disposal system. Since garbage...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms fully connected layer
litter
Machine learning algorithms
Object detection
Prediction algorithms
prediction time
Predictive models
Real-time systems
Roads
Sociology
YOLOv4-Tiny
Title Real-time Litter Recognition Using Improved YOLOv4 Tiny Algorithm
URI https://ieeexplore.ieee.org/document/9972356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO4gnlU38TUCPpluSJm2PYziGbE7GBvM0mjbVorZSW2H-9SZtN1E8eAuBkIQH-d57-b73AK60JxQIoghmQnnY9n0XS59JTMPQ7SlfejwyqYHJnRgt7NslXzbgequFUUqV5DNlmWH5lx-mQWFSZV0j8mRcNKHpuKLSau3AZV02sztZvxdZMUgTzh1i0iWUWvWKH61TSuQY7sFks2dFGHm2ilxaweevcoz_PdQ-dL41euh-iz4H0FBJG_oz7fdh0y8ejWOj00GzDUEoTVBJD0BVGkGF6GE6nn7YaB4na9R_eUyzOH967cBieDMfjHDdJAHHOjbIcSiYE3CPMcbtQGOLG0qXRMTWkQijRHmR0Vn5LouEo7FeUUlDE-TpKMXWzhL12SG0kjRRR4A8SXuypwiXkWMHXGrfMZK-NjGh0iHUOYa2uf7qraqDsapvfvL39CnsGhOYd56IM2jlWaHONYDn8qK03BdEs5xt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7MCeqTyibeDeijncutl8cxHFPbTcYG82k0bapFbWW2wvz1Jm03UXzwLQRCEg7kO-fk-84BuFCeUGBiiQ1qSsdgvm8bwqfCIGFot6UvHB7p1IA3MPsTdjvl0xpcrrQwUsqCfCZbelj85YdpkOtU2ZUWeVJursE6Z4zxUq21AedV4cwrb_Gez_NumnBuYZ0wIaRVrfnRPKXAjt42eMtdS8rIcyvPRCv4_FWQ8b_H2oHmt0oP3a_wZxdqMmlAZ6Q8P0N3jEdurJU6aLSkCKUJKggCqEwkyBA9DN3hB0PjOFmgzstjOo-zp9cmTHrX427fqNokGLGKDjIjNKkVcIdSylmg0MUOhY0jzFQsQgmWTqSVVr5NI9NSaC-JIKEO81ScwpS7RHy6B_UkTeQ-IEeQtmhLzEVksYAL5T1GwldGxkRYmFgH0NDXn72VlTBm1c0P_54-g83-2HNn7s3g7gi2tDn0q4_NY6hn81yeKDjPxGlhxS-n-p-6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+2nd+Mysore+Sub+Section+International+Conference+%28MysuruCon%29&rft.atitle=Real-time+Litter+Recognition+Using+Improved+YOLOv4+Tiny+Algorithm&rft.au=V%2C+Shalini&rft.au=Tangade%2C+Shrikant&rft.au=K%2C+Prajna+P&rft.au=J+P%2C+Sangeetha&rft.date=2022-10-16&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FMysuruCon55714.2022.9972356&rft.externalDocID=9972356