Prediction of Luoma Lake Water Level Based on Improved ICEEMDAN-LSTM Model

Aiming at solving the problems of more noise, poor stationarity and low prediction accuracy of traditional time series models, a water level prediction model is proposed in combination with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and Long Short-Term Mem...

Full description

Saved in:
Bibliographic Details
Published in2022 7th International Conference on Computational Intelligence and Applications (ICCIA) pp. 95 - 102
Main Authors Shan, Qingpeng, Liang, Xuechun, Wang, Congyou
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.06.2022
Subjects
Online AccessGet full text
DOI10.1109/ICCIA55271.2022.9828420

Cover

Abstract Aiming at solving the problems of more noise, poor stationarity and low prediction accuracy of traditional time series models, a water level prediction model is proposed in combination with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and Long Short-Term Memory (LSTM). The modeling process is as follows: The data mirror is extended to improve the endpoint effect caused by ICEEMDAN decomposition; The extended data is decomposed into several intrinsic mode components (IMF) by ICEEMDAN; The high-frequency noise component (denoted by IMF 1) will be eliminated, and the LSTM parallel prediction model of middle and low frequency components will be established; The final prediction result is obtained by reconstructing the prediction result of medium and low frequency components. Experiments show that this model has higher prediction accuracy than LSTM, LightGBM, EMD-LSTM, ICEEMDAN-LightGBM, and ICEEMDAN-LSTM model without mirror continuation and high-frequency noise elimination. In the prediction of the upper water level of Luoma Lake Reservoir, MAE is 0.008m and RMSE is 0.022m, and R2 reaches 99.8%.
AbstractList Aiming at solving the problems of more noise, poor stationarity and low prediction accuracy of traditional time series models, a water level prediction model is proposed in combination with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and Long Short-Term Memory (LSTM). The modeling process is as follows: The data mirror is extended to improve the endpoint effect caused by ICEEMDAN decomposition; The extended data is decomposed into several intrinsic mode components (IMF) by ICEEMDAN; The high-frequency noise component (denoted by IMF 1) will be eliminated, and the LSTM parallel prediction model of middle and low frequency components will be established; The final prediction result is obtained by reconstructing the prediction result of medium and low frequency components. Experiments show that this model has higher prediction accuracy than LSTM, LightGBM, EMD-LSTM, ICEEMDAN-LightGBM, and ICEEMDAN-LSTM model without mirror continuation and high-frequency noise elimination. In the prediction of the upper water level of Luoma Lake Reservoir, MAE is 0.008m and RMSE is 0.022m, and R2 reaches 99.8%.
Author Wang, Congyou
Liang, Xuechun
Shan, Qingpeng
Author_xml – sequence: 1
  givenname: Qingpeng
  surname: Shan
  fullname: Shan, Qingpeng
  email: 361421175@qq.com
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University,Nanjing,China
– sequence: 2
  givenname: Xuechun
  surname: Liang
  fullname: Liang, Xuechun
  email: liangxuechun@njtech.edu.cn
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University,Nanjing,China
– sequence: 3
  givenname: Congyou
  surname: Wang
  fullname: Wang, Congyou
  email: 408371679@qq.com
  organization: The Eastern Route Of South-to-North Water, Diversion Project Jiangsu Water Source Co.,Ltd,Nanjing,China
BookMark eNotj81KxDAURiPowhl9AhfmBVpz89Mmy1qrVlIVHHE5pMktFNtm6NQB394BZ_WdxeHAtyLnU5yQkFtgKQAzd3VZ1oVSPIeUM85To7mWnJ2RFWSZkkZpmV-Sl_cZQ--XPk40dtT-xNFR676RfrkFZ2rxgAO9d3sM9KjU426OhyPXZVU1D8VrYj82DW1iwOGKXHRu2OP1adfk87HalM-JfXuqy8ImPYBekgCaBWmMROOw40pw8LnSIrTeBy0lEzoHnwF0LKg2tAY7aMG3wgTBWO7Emtz8d3tE3O7mfnTz7_Z0T_wBZI9IkQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIA55271.2022.9828420
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665495847
9781665495844
EndPage 102
ExternalDocumentID 9828420
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-d180d4994e9aef25321c7583dbccd84403871c611f0d5bdb9ef1b1cb39d3007a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:52 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-d180d4994e9aef25321c7583dbccd84403871c611f0d5bdb9ef1b1cb39d3007a3
PageCount 8
ParticipantIDs ieee_primary_9828420
PublicationCentury 2000
PublicationDate 2022-June-24
PublicationDateYYYYMMDD 2022-06-24
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-24
  day: 24
PublicationDecade 2020
PublicationTitle 2022 7th International Conference on Computational Intelligence and Applications (ICCIA)
PublicationTitleAbbrev ICCIA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8176068
Snippet Aiming at solving the problems of more noise, poor stationarity and low prediction accuracy of traditional time series models, a water level prediction model...
SourceID ieee
SourceType Publisher
StartPage 95
SubjectTerms Adaptation models
Feature extraction
ICEEMDAN
Lakes
Logic gates
LSTM
mirror continuation
Predictive models
Time series analysis
Water
water level prediction
Title Prediction of Luoma Lake Water Level Based on Improved ICEEMDAN-LSTM Model
URI https://ieeexplore.ieee.org/document/9828420
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyZAFPGWB0acxo7zGkto1VZJVYlWdKv8ioQKDaqShV_POQlFIAY2y7Jk6zzcfXfffYfQXejrINYsININQwAoMiTShJxQzTxuFcdFLbGRzYLxkk9X_qqD7ve9MMaYmnxmHLusa_m6UJVNlfVjgAecAUA_CMO46dVqKVvUjfuTJJkMrKCYhX2MOe3pH2NTaq8xOkLZ130NWWTjVKV01McvKcb_PugY9b778_B873lOUMdsT9F0vrNFF2toXOQ4rYo3gVOxMfgZ4skdTi09CD-A19IYjjTZBFhPkuEwexzMSPq0yLCdjfbaQ8vRcJGMSTspgbwAQCiJppGrAbtwEwuTM99jVAEQ8LRUSkec2xo1VQGluat9qWVsciqpkl6sPQgShHeGuttia84RlkJyE_mAxKyUn9GRK5hRItcKAgOI3i7QqbXD-r0Rw1i3Jrj8e_sKHdq_sNwqxq9Rt9xV5ga8eClv6-_7BIQsm5A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsAEqEW88cBI0thxXmMJrZqSVJVoRbfKr0io0KCqWfj1nJNQBGJgsyxLts7D3Xf33XcI3Qae8iNFfUs4QQAARQSW0AGziKIuM4rjvJLYyCb-aM7GC2_RQne7XhitdUU-07ZZVrV8VcjSpMp6EcADRgGg73mAKoK6W6shbREn6iVxnPSNpJgBfpTazfkfg1MqvzE8RNnXjTVdZGWXW2HLj19ijP990hHqfnfo4enO9xyjll530Hi6MWUXY2pc5DgtizeOU77S-Bkiyg1ODUEI34PfUhiO1PkEWCfxYJA99CdW-jTLsJmO9tpF8-FgFo-sZlaC9QIQYWspEjoK0AvTEdc59VxKJEABVwkpVciYqVIT6ROSO8oTSkQ6J4JI4UbKhTCBuyeovS7W-hRhwQXToQdYzIj5aRU6nGrJcyUhNID47Qx1jB2W77UcxrIxwfnf2zdofzTL0mWaTB4v0IH5F8O0ouwStbebUl-BT9-K6-orPwHjf57h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+7th+International+Conference+on+Computational+Intelligence+and+Applications+%28ICCIA%29&rft.atitle=Prediction+of+Luoma+Lake+Water+Level+Based+on+Improved+ICEEMDAN-LSTM+Model&rft.au=Shan%2C+Qingpeng&rft.au=Liang%2C+Xuechun&rft.au=Wang%2C+Congyou&rft.date=2022-06-24&rft.pub=IEEE&rft.spage=95&rft.epage=102&rft_id=info:doi/10.1109%2FICCIA55271.2022.9828420&rft.externalDocID=9828420