Dynamic A Algorithm to Improve Dynamic Path Planning of Unmanned Epidemic Prevention and Killing Vehicles

Since personnel in complex regions or contaminated areas cannot enter to achieve epidemic prevention and killing operations, the application requirements for self-propelled epidemic prevention robots are becoming more and more extensive. The path planning algorithm is a key technology for robots in...

Full description

Saved in:
Bibliographic Details
Published in2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) pp. 1 - 4
Main Authors Junshu, Han, Liu, Yingjie, Tian, Lei, Zheng, Yu
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.10.2021
Subjects
Online AccessGet full text
DOI10.1109/CISP-BMEI53629.2021.9624320

Cover

Abstract Since personnel in complex regions or contaminated areas cannot enter to achieve epidemic prevention and killing operations, the application requirements for self-propelled epidemic prevention robots are becoming more and more extensive. The path planning algorithm is a key technology for robots in the eradication and epidemic prevention, but some node information in the original map will change in real time during the eradication process, which greatly reduces the robot's ability to work in epidemic prevention. This article first designed a relatively complex 900×900 point map and implemented the dynamic path planning of the Dynamic A * (D*) algorithm using the python language. The simulation results show that the algorithm greatly shortens the time of secondary path planning after encountering obstacles, and improves the reaction speed of the robot in epidemic prevention. Preliminary verification of the feasibility of D* algorithm in the path planning of self-propelled anti-epidemic robots.
AbstractList Since personnel in complex regions or contaminated areas cannot enter to achieve epidemic prevention and killing operations, the application requirements for self-propelled epidemic prevention robots are becoming more and more extensive. The path planning algorithm is a key technology for robots in the eradication and epidemic prevention, but some node information in the original map will change in real time during the eradication process, which greatly reduces the robot's ability to work in epidemic prevention. This article first designed a relatively complex 900×900 point map and implemented the dynamic path planning of the Dynamic A * (D*) algorithm using the python language. The simulation results show that the algorithm greatly shortens the time of secondary path planning after encountering obstacles, and improves the reaction speed of the robot in epidemic prevention. Preliminary verification of the feasibility of D* algorithm in the path planning of self-propelled anti-epidemic robots.
Author Liu, Yingjie
Junshu, Han
Zheng, Yu
Tian, Lei
Author_xml – sequence: 1
  givenname: Han
  surname: Junshu
  fullname: Junshu, Han
  organization: Research Department of medical support technology,Tianjin,China
– sequence: 2
  givenname: Yingjie
  surname: Liu
  fullname: Liu, Yingjie
  organization: Tiangong University,School of Life Sciences,Tianjin,China
– sequence: 3
  givenname: Lei
  surname: Tian
  fullname: Tian, Lei
  organization: Tiangong University,School of Life Sciences,Tianjin,China
– sequence: 4
  givenname: Yu
  surname: Zheng
  fullname: Zheng, Yu
  organization: Tiangong University,School of Life Sciences,Tianjin,China
BookMark eNo1kEFLwzAcxSPoQec-gZeA59YkbdLmWGudxYkFndeRJv-sgTQtXRns2zt1woPH4_14h3eDLsMQAKF7SmJKiXwo648menyrap4IJmNGGI2lYGnCyAVayiynQvCUEJKKa-SejkH1TuMCF343TG7uejwPuO7HaTgA_q8bNXe48SoEF3Z4sHgT-lMAg6vRGfhFJjhAmN0QsAoGvzrvf9gv6Jz2sL9FV1b5PSzPvkCb5-qzfInW76u6LNaRozSfIw2UGy1aC8Jwa0Fxa0zCqdSGGaEIFS3XbZbkikvgNANtpWTE6PwkCzJZoLu_XQcA23FyvZqO2_MByTci6lkP
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CISP-BMEI53629.2021.9624320
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665400046
1665400048
EndPage 4
ExternalDocumentID 9624320
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-ce15dc6bfe6d5ffea5fdd3519cd2d6a016b5cb738a59e517ecf9920dc8dc8fe93
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:50 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-ce15dc6bfe6d5ffea5fdd3519cd2d6a016b5cb738a59e517ecf9920dc8dc8fe93
PageCount 4
ParticipantIDs ieee_primary_9624320
PublicationCentury 2000
PublicationDate 2021-Oct.-23
PublicationDateYYYYMMDD 2021-10-23
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)
PublicationTitleAbbrev CISP-BMEI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7842889
Snippet Since personnel in complex regions or contaminated areas cannot enter to achieve epidemic prevention and killing operations, the application requirements for...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Dynamic A algorithm
Epidemics
Heuristic algorithms
Path planning
Real-time systems
route plan
Self-propelled anti-epidemic robot
Signal processing
Signal processing algorithms
Simulation
Title Dynamic A Algorithm to Improve Dynamic Path Planning of Unmanned Epidemic Prevention and Killing Vehicles
URI https://ieeexplore.ieee.org/document/9624320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zB_Gksom_CejRdmvStM1xzo1NmQx0stvIjxc35lqR7uJfb9J2E8WD0ENoU1pe4L3vJe99H0LXoq11QqXzfgn3QhFwj5s49kLqooeRTFDXKDx6jAaT8H7KpjV0s-2FAYCi-Ax8NyzO8nWm1m6rrMUjElJiE_SdOInKXq1ddFXRZra6w6exdzvqDZl1yq4HhQR-9cYP6ZQicvT30WjzzbJgZOmvc-mrz190jP_9qQPU_O7Rw-Nt9DlENUgbaHFXCszjDu68vWY28Z-vcJ7hcusA8Obx2OI-vNErwpnBk3QlnMfFvVIx1k6puJ2yFItU44dFQd6NX2BeFNI10aTfe-4OvEpMwVvYHCL3FARMq0gaiDQzBgQzWjt1PqWJjoRFfpIpGdNEMA4siEEZzklbq8ReBjg9QvU0S-EY4YRaUECISmKqQhnGom0siLPmtuAFTKBOUMOZafZe8mXMKgud_n37DO25pXLxgNBzVM8_1nBhA30uL4sV_gJ5DqrR
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IJupJDRh_20SPbrC13dYjIgSEERLBcCP9KUTZjBkX_3rbbWA0Hkx2aLYuW16T977Xvvd9ANyyppQR4tb7RdTBzKMO1WHoYGSjh-aEIdsoHI-C3hQ_zsisAu62vTBKqbz4TLl2mJ_ly1Ss7VZZgwY-Rr5J0HcIxpgU3Vq74KYkzmy0-09j5z7u9Ilxy7YLxffc8p0f4il57OgegHjz1aJk5NVdZ9wVn78IGf_7W4eg_t2lB8fb-HMEKiqpgeVDITEPW7D19pKa1H-xglkKi80DBTePxwb5wY1iEUw1nCYrZn0u7BSasWZKye6UJpAlEg6WOX03fFaLvJSuDqbdzqTdc0o5BWdpsojMEcojUgRcq0ASrRUjWkqrzyekLwNmsB8ngocoYoQq4oVKaEr9phSRubSi6BhUkzRRJwBGyMAC3xdRiATmOGRNbWCcMbeBL0p74hTUrJnm7wVjxry00Nnft6_BXm8SD-fD_mhwDvbtstno4KMLUM0-1urShP2MX-Wr_QWW1K4e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+14th+International+Congress+on+Image+and+Signal+Processing%2C+BioMedical+Engineering+and+Informatics+%28CISP-BMEI%29&rft.atitle=Dynamic+A+Algorithm+to+Improve+Dynamic+Path+Planning+of+Unmanned+Epidemic+Prevention+and+Killing+Vehicles&rft.au=Junshu%2C+Han&rft.au=Liu%2C+Yingjie&rft.au=Tian%2C+Lei&rft.au=Zheng%2C+Yu&rft.date=2021-10-23&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FCISP-BMEI53629.2021.9624320&rft.externalDocID=9624320