Detection and Identification of faults in a PV Module using CNN based Algorithm

Additional power losses, hotspots, and varying irradiances across PV modules can all be caused by faults in PV arrays. As a result, there is a loss of production and a decrease in generation efficiency. If the faults are not addressed, they may spread to neighbouring modules, resulting in the full f...

Full description

Saved in:
Bibliographic Details
Published in2022 3rd International Conference for Emerging Technology (INCET) pp. 1 - 5
Main Authors Prajapati, Nikhil, Aiyar, Ramanansri, Raj, Ayush, Paraye, Milind
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.05.2022
Subjects
Online AccessGet full text
DOI10.1109/INCET54531.2022.9825452

Cover

Abstract Additional power losses, hotspots, and varying irradiances across PV modules can all be caused by faults in PV arrays. As a result, there is a loss of production and a decrease in generation efficiency. If the faults are not addressed, they may spread to neighbouring modules, resulting in the full failure of PV strings. Hence to overcome these faults and its repercussions, it is necessary to have a system in place that would help identify the faults efficiently and accurately. The thermal images dataset contains a set of images shot through a drone and it is detected using the box detection algorithm. The detection of the faulty part of the panel and classification of four different types of faults viz. temporary hotspot fault, permanent hotspot fault, bypass diode fault and crack/wear and tear, are done using the CNN learning algorithm which is YOLO (You Only Look Once).
AbstractList Additional power losses, hotspots, and varying irradiances across PV modules can all be caused by faults in PV arrays. As a result, there is a loss of production and a decrease in generation efficiency. If the faults are not addressed, they may spread to neighbouring modules, resulting in the full failure of PV strings. Hence to overcome these faults and its repercussions, it is necessary to have a system in place that would help identify the faults efficiently and accurately. The thermal images dataset contains a set of images shot through a drone and it is detected using the box detection algorithm. The detection of the faulty part of the panel and classification of four different types of faults viz. temporary hotspot fault, permanent hotspot fault, bypass diode fault and crack/wear and tear, are done using the CNN learning algorithm which is YOLO (You Only Look Once).
Author Raj, Ayush
Prajapati, Nikhil
Aiyar, Ramanansri
Paraye, Milind
Author_xml – sequence: 1
  givenname: Nikhil
  surname: Prajapati
  fullname: Prajapati, Nikhil
  email: nikhilprajapatinrp@gmail.com
  organization: Sardar Patel Institute of Technology,Electronics and Telecommunication Engineering Department,Mumbai,India
– sequence: 2
  givenname: Ramanansri
  surname: Aiyar
  fullname: Aiyar, Ramanansri
  organization: Sardar Patel Institute of Technology,Electronics and Telecommunication Engineering Department,Mumbai,India
– sequence: 3
  givenname: Ayush
  surname: Raj
  fullname: Raj, Ayush
  organization: Sardar Patel Institute of Technology,Electronics and Telecommunication Engineering Department,Mumbai,India
– sequence: 4
  givenname: Milind
  surname: Paraye
  fullname: Paraye, Milind
  organization: Sardar Patel Institute of Technology,Electronics and Telecommunication Engineering Department,Mumbai,India
BookMark eNotj8tOwzAURI0EC1r4Ahb4BxJ8_UjiZRUKVCopi8K28uOmWEodlDgL_p6IdjWaM5qRZkGuYx-RkEdgOQDTT5umXu-VVAJyzjjPdcVnx6_IAopCSS211rdk94wJXQp9pCZ6uvEYU2iDM_-ob2lrpi6NNMw5_fii772fOqTTGOKR1k1DrRnR01V37IeQvk935KY13Yj3F12Sz5f1vn7LtrvXTb3aZgGgSplF70orXSVKaTmUhQKhZmC9kthWwkurlXPMgQHOK8Gd4sDmEnPGm4qLJXk47wZEPPwM4WSG38Plo_gDFDZL8g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INCET54531.2022.9825452
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665494999
9781665494977
9781665494991
1665494972
EndPage 5
ExternalDocumentID 9825452
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-bedc7b4c8374b217651357b4bd54ef83d4b95cc0c1a122832c5210edc0cada823
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:01 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-bedc7b4c8374b217651357b4bd54ef83d4b95cc0c1a122832c5210edc0cada823
PageCount 5
ParticipantIDs ieee_primary_9825452
PublicationCentury 2000
PublicationDate 2022-May-27
PublicationDateYYYYMMDD 2022-05-27
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-27
  day: 27
PublicationDecade 2020
PublicationTitle 2022 3rd International Conference for Emerging Technology (INCET)
PublicationTitleAbbrev INCET
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8132544
Snippet Additional power losses, hotspots, and varying irradiances across PV modules can all be caused by faults in PV arrays. As a result, there is a loss of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bypass diode
CNN
Fault detection
Fault diagnosis
Faults
Heating systems
Hotspot
Image processing
Photovoltaic module
Photovoltaic systems
Production
Real-time systems
Thermal Image
Title Detection and Identification of faults in a PV Module using CNN based Algorithm
URI https://ieeexplore.ieee.org/document/9825452
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhJmjh2nIyoUBWklA4Udav8WSpKgkqy8Os5J6EIxMAWOXEc-eTcPfu9O4Qu05CCZRXxdECVR0OuYUnxwKW7MxwiaG6J0w5nk3g8o_dzNu-gq60WxhhTk8-M7y7rs3xdqMptlQ1SB2cY_HB34DWNVqulbIVBOrhzxVyYGxpgHyF--_SPsim11xjtoexrvIYs8uJXpfTVx69UjP_9oH3U_9bn4enW8xygjsl76OHGlDWvKsci17hR4Np2Sw4XFltRrct3vIL7ePqEs0JXa4Md8X2Jh5MJdg5N4-v1stisyufXPpqNbh-HY68tl-CtACWUnjRacUkVQE4qAWnELIwYNEjNqLFJpKlMmVKBCkXokt4QBa47gE6BElokJDpE3bzIzRHCGuICRU0sowTgmbAJt4rwWFmbChexHKOem4zFW5MRY9HOw8nfzado1xnEnbkTfoa65aYy5-DKS3lR2_ATCI-etQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsAEqEV844GRpIljx8mIClWBJnRoUbfKn6WiJKgkC78eOwlFIAa2yLFly6fk3bPv3QFwGfvYWFYgR3pYONin0nxS1LPp7hQ1HjTVyGqHkzQcTvH9jMxa4GqjhVFKVcFnyrWP1V2-zEVpj8p6saUzxPxwtwjGmNRqrSZoy_fi3p0t50Ls5Ib4IeQ2_X8UTqlwY7ALkq8Z63CRF7csuCs-fiVj_O-S9kD3W6EHxxvs2QctlXXA440qqsiqDLJMwlqDq5tDOZhrqFm5Kt7h0ryH4yeY5LJcKWhD3xewn6bQQpqE16tFvl4Wz69dMB3cTvpDpymY4CwNTygcrqSgHAtDOjE3XCMkfkBMA5cEKx0FEvOYCOEJn_k27Q0SBrw9M8gTTLIIBQegneWZOgRQGs9AYBXyIDIEjemIaoFoKLSOmfVZjkDHbsb8rc6JMW_24fjv5guwPZwko_noLn04ATvWOPYGHtFT0C7WpTozwF7w88qen4fOogI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+3rd+International+Conference+for+Emerging+Technology+%28INCET%29&rft.atitle=Detection+and+Identification+of+faults+in+a+PV+Module+using+CNN+based+Algorithm&rft.au=Prajapati%2C+Nikhil&rft.au=Aiyar%2C+Ramanansri&rft.au=Raj%2C+Ayush&rft.au=Paraye%2C+Milind&rft.date=2022-05-27&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FINCET54531.2022.9825452&rft.externalDocID=9825452