Research on Surface Target Detection Algorithm Based on 3D Lidar

3D Lidar is the key perception module of Unmanned Surface Vehicle (USV). Targets in the background of the water are affected by refracted light. The visual sensor is difficult to detect in special scenes, which affects the autonomous navigation and obstacle avoidance function. This paper proposes a...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC pp. 489 - 494
Main Authors Zhou, Zhiguo, Li, Yiyao, Cao, Jiangwei, Di, Shunfan, Zhao, Wang, Ailaterini, Melliou
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.06.2021
Subjects
Online AccessGet full text
DOI10.1109/SPAC53836.2021.9539991

Cover

Abstract 3D Lidar is the key perception module of Unmanned Surface Vehicle (USV). Targets in the background of the water are affected by refracted light. The visual sensor is difficult to detect in special scenes, which affects the autonomous navigation and obstacle avoidance function. This paper proposes a 3D lidar-based VoxelNet detection algorithm for water surface targets. The sparse point cloud data on the water surface is divided into voxel form, and the hash table is input for efficient query, and the feature tensor is extracted through the feature learning layer and input into the convolutional layer to obtain the global target Information to achieve high-precision target detection. Experimental results show that the surface target detection algorithm based on 3D lidar improves 13.6% compared with the visual solution, which provides a more effective technical means for the intelligent process of USV.
AbstractList 3D Lidar is the key perception module of Unmanned Surface Vehicle (USV). Targets in the background of the water are affected by refracted light. The visual sensor is difficult to detect in special scenes, which affects the autonomous navigation and obstacle avoidance function. This paper proposes a 3D lidar-based VoxelNet detection algorithm for water surface targets. The sparse point cloud data on the water surface is divided into voxel form, and the hash table is input for efficient query, and the feature tensor is extracted through the feature learning layer and input into the convolutional layer to obtain the global target Information to achieve high-precision target detection. Experimental results show that the surface target detection algorithm based on 3D lidar improves 13.6% compared with the visual solution, which provides a more effective technical means for the intelligent process of USV.
Author Zhou, Zhiguo
Di, Shunfan
Zhao, Wang
Cao, Jiangwei
Li, Yiyao
Ailaterini, Melliou
Author_xml – sequence: 1
  givenname: Zhiguo
  surname: Zhou
  fullname: Zhou, Zhiguo
  email: zhiguozhou@bit.edu.cn
  organization: School of Information and Electronics Beijing Institute of Technology,Beijing,China
– sequence: 2
  givenname: Yiyao
  surname: Li
  fullname: Li, Yiyao
  email: 3220180452@bit.edu.cn
  organization: School of Information and Electronics Beijing Institute of Technology,Beijing,China
– sequence: 3
  givenname: Jiangwei
  surname: Cao
  fullname: Cao, Jiangwei
  email: 3220190487@bit.edu.cn
  organization: School of Information and Electronics Beijing Institute of Technology,Beijing,China
– sequence: 4
  givenname: Shunfan
  surname: Di
  fullname: Di, Shunfan
  email: 1335710212@qq.com
  organization: School of Information and Electronics Beijing Institute of Technology,Beijing,China
– sequence: 5
  givenname: Wang
  surname: Zhao
  fullname: Zhao, Wang
  email: wangzhao9080@jnu.edu.cn
  organization: Office of scientific R&D Jinan University,Jinan,China
– sequence: 6
  givenname: Melliou
  surname: Ailaterini
  fullname: Ailaterini, Melliou
  email: 3820181060@bit.edu.cn
  organization: School of Information and Electronics Beijing Institute of Technology,Beijing,China
BookMark eNotj81Kw0AURkfQha0-gSDzAolz5ybzs7OmVoWAYuu6TGbutANtIpO48O1V7OpbnMOBb8bO-6Enxm5BlADC3q3fFk2NBlUphYTS1mithTM2A6XqqkIp9SW7f6eRXPZ7PvR8_ZWj88Q3Lu9o4kuayE_pFywOuyGnaX_kD26k8OfikrcpuHzFLqI7jHR92jn7WD1umueifX16aRZtkQDMVFhvTRSgtbRSuU4JMhKVFs4ggsLQWYqhwkp3XkbtJckaFEEMNVYm1AHn7Oa_m4ho-5nT0eXv7ekU_gBpv0VI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPAC53836.2021.9539991
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665443227
9781665443227
EndPage 494
ExternalDocumentID 9539991
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-9c98f01772926ab60e823670a833163db9efd4347bc2f7c2e2516e1fd5348d5d3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:52 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-9c98f01772926ab60e823670a833163db9efd4347bc2f7c2e2516e1fd5348d5d3
PageCount 6
ParticipantIDs ieee_primary_9539991
PublicationCentury 2000
PublicationDate 2021-June-18
PublicationDateYYYYMMDD 2021-06-18
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-18
  day: 18
PublicationDecade 2020
PublicationTitle 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC
PublicationTitleAbbrev SPAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8007791
Snippet 3D Lidar is the key perception module of Unmanned Surface Vehicle (USV). Targets in the background of the water are affected by refracted light. The visual...
SourceID ieee
SourceType Publisher
StartPage 489
SubjectTerms 3D lidar
Data mining
Feature extraction
Laser radar
Navigation
Object detection
Target detection
Three-dimensional displays
USV
Visualization
VoxelNet
Title Research on Surface Target Detection Algorithm Based on 3D Lidar
URI https://ieeexplore.ieee.org/document/9539991
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDzarmnSNr05N8cQJ4NtsNtokhcdaiulvfjXm2TdRPHgLYQHSQjhvbz3fd9D6NpK2GWx1B4XoDzm6ruCcE-ncRJqmQgKNg85eYrHC_awjJYtdLPjwgCAA5-Bb4eulq8KWdtUWS-1MqqWqr5nlthwtRrSLwnS3mzaH5jnSy3wICR-Y_yja4pzGqMDNNkut8GKvPp1JXz5-UuJ8b_7OUTdb3oenu4czxFqQd5Bt1sMHS5yPKtLnRmrucN54yFUDnGV4_7bc1Guq5d3fGfcl7K2dIgf1yoru2gxup8Pxl7THsFbm19B5aUy5do8KBMeh3Em4gC4k2PLOKUmylIiBa0YZYmQoU5kCCaUiYFoFVHGVaToMWrnRQ4nCDMNaUZYAjwQLFAx18A5kYHgobCFxlPUsadffWwUMFbNwc_-nj5H-_YGLKCK8AvUrsoaLo3rrsSVu7MvpwyZAw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjg23ttu4mggQVCAmQcCNr-6pE3cyyXfzrbcvAaDx4a5qXtE3TvNf3vu97CF0bCbskFMphHKRDbX2Xe8xRcRj5SkScgMlDjsbhYE4fF8Gihm62XBgAsOAzaJmhreXLTJQmVdaOjYyqoarvBPpXEa3ZWhXt13Pj9nTS6eoHTAz0wPdalfmPvinWbfT30Wiz4Bot8toqC94Sn7-0GP-7owPU_Cbo4cnW9RyiGqQNdLtB0eEsxdMyV4m2mlmkN-5BYTFXKe68PWf5qnh5x3fagUljS3p4uJJJ3kTz_v2sO3CqBgnOSv8LCicWMVP6SekA2Q8THrrArCBbwgjRcZbkMShJCY248FUkfNDBTAiekgGhTAaSHKF6mqVwjDBVECcejYC5nLoyZAoY84TLmc9NqfEENczplx9rDYxldfDTv6ev0O5gNhouhw_jpzO0Z27DwKs8do7qRV7ChXbkBb-09_cF5QKcVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Security%2C+Pattern+Analysis%2C+and+Cybernetics%EF%BC%88SPAC&rft.atitle=Research+on+Surface+Target+Detection+Algorithm+Based+on+3D+Lidar&rft.au=Zhou%2C+Zhiguo&rft.au=Li%2C+Yiyao&rft.au=Cao%2C+Jiangwei&rft.au=Di%2C+Shunfan&rft.date=2021-06-18&rft.pub=IEEE&rft.spage=489&rft.epage=494&rft_id=info:doi/10.1109%2FSPAC53836.2021.9539991&rft.externalDocID=9539991