Vision-Inertial-based Adaptive State Estimation of Hexacopter with a Cable-Suspended Load
Tracking a given trajectory by aerial vehicles without an external positioning system is challenging in the natural environment since the computation power and sensory of the online positioning process are limited. We design a novel and theoretically-proved state estimator for an unmanned aerial veh...
Saved in:
| Published in | 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR) pp. 168 - 173 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
17.07.2022
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/RCAR54675.2022.9872194 |
Cover
| Abstract | Tracking a given trajectory by aerial vehicles without an external positioning system is challenging in the natural environment since the computation power and sensory of the online positioning process are limited. We design a novel and theoretically-proved state estimator for an unmanned aerial vehicle with a cable-suspended load based on stability theory. The asymptotical convergence of our system is proved by the Lyapunov theory. The visual-inertial estimation algorithm, which we propose, consumes lower computation power compared with the optimization-based methods and provides high-frequency state estimation for the system. Several Gazebo-based simulations are performed to verify that the proposed algorithm is better than one state-of-the-art visual-inertial-based algorithm. The simulation results demonstrate the convergence and efficiency of the algorithm. |
|---|---|
| AbstractList | Tracking a given trajectory by aerial vehicles without an external positioning system is challenging in the natural environment since the computation power and sensory of the online positioning process are limited. We design a novel and theoretically-proved state estimator for an unmanned aerial vehicle with a cable-suspended load based on stability theory. The asymptotical convergence of our system is proved by the Lyapunov theory. The visual-inertial estimation algorithm, which we propose, consumes lower computation power compared with the optimization-based methods and provides high-frequency state estimation for the system. Several Gazebo-based simulations are performed to verify that the proposed algorithm is better than one state-of-the-art visual-inertial-based algorithm. The simulation results demonstrate the convergence and efficiency of the algorithm. |
| Author | Chen, Haoyao Wang, Siqiang Jiang, Xin Liu, Jianheng |
| Author_xml | – sequence: 1 givenname: Siqiang surname: Wang fullname: Wang, Siqiang organization: Harbin Institute of Technology,School of Mechanical Engineering and Automation,Shenzhen,P.R.China – sequence: 2 givenname: Jianheng surname: Liu fullname: Liu, Jianheng organization: Harbin Institute of Technology,School of Mechanical Engineering and Automation,Shenzhen,P.R.China – sequence: 3 givenname: Xin surname: Jiang fullname: Jiang, Xin organization: Harbin Institute of Technology,School of Mechanical Engineering and Automation,Shenzhen,P.R.China – sequence: 4 givenname: Haoyao surname: Chen fullname: Chen, Haoyao email: hychen5@hiC.edu.cn organization: Harbin Institute of Technology,School of Mechanical Engineering and Automation,Shenzhen,P.R.China |
| BookMark | eNotj91Kw0AUhFfQC619AkH2BRL3N8m5DKHaQkBoVfCqnM2e4EJMQrL-vb2B9mouZr5h5oZd9kNPjN1LkUop4GFflXtrstymSiiVQpErCeaCrSEvZJYtFhS6uGbvb2EOQ5_seppiwC5xOJPnpccxhm_ih4iR-GaO4RPjEuRDy7f0i80wRpr4T4gfHHmFrqPk8DWP1PsFrwf0t-yqxW6m9VlX7PVx81Jtk_r5aVeVdRKkLGICgNrlaJQXpIRAqbBpISdtW5E5i96C1B4aJQ0CWuepdZCBMA16I63XK3Z36g1EdBynZej0dzwf1v-bslD_ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/RCAR54675.2022.9872194 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665469838 1665469838 |
| EndPage | 173 |
| ExternalDocumentID | 9872194 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-99a3b7a42d0e200a12acf97e35f06b5ad5913d9c214a9a5bdefb96904cad415d3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:20 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-99a3b7a42d0e200a12acf97e35f06b5ad5913d9c214a9a5bdefb96904cad415d3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9872194 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-July-17 |
| PublicationDateYYYYMMDD | 2022-07-17 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-July-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR) |
| PublicationTitleAbbrev | RCAR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8037695 |
| Snippet | Tracking a given trajectory by aerial vehicles without an external positioning system is challenging in the natural environment since the computation power and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 168 |
| SubjectTerms | Adaptation models Autonomous aerial vehicles Computational modeling Stability analysis Trajectory Trajectory tracking Visualization |
| Title | Vision-Inertial-based Adaptive State Estimation of Hexacopter with a Cable-Suspended Load |
| URI | https://ieeexplore.ieee.org/document/9872194 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB49mu68km2MpLVWsSLVSTyXJZEGU3aK7IP56k-xaUTx4CSEEEmaYfJlkvhmEzhUwrlUEJGMsJKlOBREhcNtInWVUZTJzROHZDZsu0qslXXbQxYYLY4zxwWcmcF3_lw-lrt1T2cD6x9bA0i20xTPWcLVa0m8UisF8NJxTa_fUen1xHLSTf1RN8aAx2UGzr-WaWJHnoK5UoD9-ZWL87352Uf-bnodvN8Czhzqm6KHHB88SJ5eFi5SWL8ThE-AhyLU70bC_VeKxteiGrIjLHE_Nuz0Q11a02L3HYolHjklF7uo3XxoX8HUpoY8Wk_H9aEraugnkyboLFRFCJorLNIbQWCOQUSx1LrhJaB4yRSVQESUgdBylUkiqwORKWC851RIsnkOyj7pFWZgDhCkY5RK2h7nhaai5YIbbC5_KgBn3pXiIek4sq3WTGmPVSuTo7-FjtO1UQ3xeyhPUrV5rc2oxvVJnXpmfl62jzg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcGj6douaZvjGBudbkPmJvM0krwURGmHtiD-9SZtnSgevIQQAgnv8fLlJe97D6ErCUGopAckCgKXUEU54S6EphEqipiMRGSJwpNpEC_ozZItG-h6w4XRWpfBZ9qx3fIvHzJV2KeyjvGPjYHRLbTNKKWsYmvVtF_P5Z1ZvzdjxvKZ8ft836mn_6ibUsLGcA9NvhasokWenSKXjvr4lYvxvzvaR-1vgh6-20DPAWrotIUeH0qeOBmlNlZavBCLUIB7INb2TMPlvRIPjE1XdEWcJTjW7-ZIXBvhYvsiiwXuWy4VuS_eyuK4gMeZgDZaDAfzfkzqygnkyTgMOeFcdGUoqA-uNmYgPF-ohIe6yxI3kEwA414XuPI9KrhgEnQiufGTqRJgEB26h6iZZqk-QpiBljZlu5vokLoq5IEOzZVPRhBo-6l4jFpWLKt1lRxjVUvk5O_hS7QTzyfj1Xg0vT1Fu1ZNpMxSeYaa-Wuhzw3C5_KiVOwnWaanGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Real-time+Computing+and+Robotics+%28RCAR%29&rft.atitle=Vision-Inertial-based+Adaptive+State+Estimation+of+Hexacopter+with+a+Cable-Suspended+Load&rft.au=Wang%2C+Siqiang&rft.au=Liu%2C+Jianheng&rft.au=Jiang%2C+Xin&rft.au=Chen%2C+Haoyao&rft.date=2022-07-17&rft.pub=IEEE&rft.spage=168&rft.epage=173&rft_id=info:doi/10.1109%2FRCAR54675.2022.9872194&rft.externalDocID=9872194 |