Vision-Inertial-based Adaptive State Estimation of Hexacopter with a Cable-Suspended Load

Tracking a given trajectory by aerial vehicles without an external positioning system is challenging in the natural environment since the computation power and sensory of the online positioning process are limited. We design a novel and theoretically-proved state estimator for an unmanned aerial veh...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE International Conference on Real-time Computing and Robotics (RCAR) pp. 168 - 173
Main Authors Wang, Siqiang, Liu, Jianheng, Jiang, Xin, Chen, Haoyao
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.07.2022
Subjects
Online AccessGet full text
DOI10.1109/RCAR54675.2022.9872194

Cover

Abstract Tracking a given trajectory by aerial vehicles without an external positioning system is challenging in the natural environment since the computation power and sensory of the online positioning process are limited. We design a novel and theoretically-proved state estimator for an unmanned aerial vehicle with a cable-suspended load based on stability theory. The asymptotical convergence of our system is proved by the Lyapunov theory. The visual-inertial estimation algorithm, which we propose, consumes lower computation power compared with the optimization-based methods and provides high-frequency state estimation for the system. Several Gazebo-based simulations are performed to verify that the proposed algorithm is better than one state-of-the-art visual-inertial-based algorithm. The simulation results demonstrate the convergence and efficiency of the algorithm.
AbstractList Tracking a given trajectory by aerial vehicles without an external positioning system is challenging in the natural environment since the computation power and sensory of the online positioning process are limited. We design a novel and theoretically-proved state estimator for an unmanned aerial vehicle with a cable-suspended load based on stability theory. The asymptotical convergence of our system is proved by the Lyapunov theory. The visual-inertial estimation algorithm, which we propose, consumes lower computation power compared with the optimization-based methods and provides high-frequency state estimation for the system. Several Gazebo-based simulations are performed to verify that the proposed algorithm is better than one state-of-the-art visual-inertial-based algorithm. The simulation results demonstrate the convergence and efficiency of the algorithm.
Author Chen, Haoyao
Wang, Siqiang
Jiang, Xin
Liu, Jianheng
Author_xml – sequence: 1
  givenname: Siqiang
  surname: Wang
  fullname: Wang, Siqiang
  organization: Harbin Institute of Technology,School of Mechanical Engineering and Automation,Shenzhen,P.R.China
– sequence: 2
  givenname: Jianheng
  surname: Liu
  fullname: Liu, Jianheng
  organization: Harbin Institute of Technology,School of Mechanical Engineering and Automation,Shenzhen,P.R.China
– sequence: 3
  givenname: Xin
  surname: Jiang
  fullname: Jiang, Xin
  organization: Harbin Institute of Technology,School of Mechanical Engineering and Automation,Shenzhen,P.R.China
– sequence: 4
  givenname: Haoyao
  surname: Chen
  fullname: Chen, Haoyao
  email: hychen5@hiC.edu.cn
  organization: Harbin Institute of Technology,School of Mechanical Engineering and Automation,Shenzhen,P.R.China
BookMark eNotj91Kw0AUhFfQC619AkH2BRL3N8m5DKHaQkBoVfCqnM2e4EJMQrL-vb2B9mouZr5h5oZd9kNPjN1LkUop4GFflXtrstymSiiVQpErCeaCrSEvZJYtFhS6uGbvb2EOQ5_seppiwC5xOJPnpccxhm_ih4iR-GaO4RPjEuRDy7f0i80wRpr4T4gfHHmFrqPk8DWP1PsFrwf0t-yqxW6m9VlX7PVx81Jtk_r5aVeVdRKkLGICgNrlaJQXpIRAqbBpISdtW5E5i96C1B4aJQ0CWuepdZCBMA16I63XK3Z36g1EdBynZej0dzwf1v-bslD_
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/RCAR54675.2022.9872194
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665469838
1665469838
EndPage 173
ExternalDocumentID 9872194
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-99a3b7a42d0e200a12acf97e35f06b5ad5913d9c214a9a5bdefb96904cad415d3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:20 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-99a3b7a42d0e200a12acf97e35f06b5ad5913d9c214a9a5bdefb96904cad415d3
PageCount 6
ParticipantIDs ieee_primary_9872194
PublicationCentury 2000
PublicationDate 2022-July-17
PublicationDateYYYYMMDD 2022-07-17
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-17
  day: 17
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)
PublicationTitleAbbrev RCAR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8037695
Snippet Tracking a given trajectory by aerial vehicles without an external positioning system is challenging in the natural environment since the computation power and...
SourceID ieee
SourceType Publisher
StartPage 168
SubjectTerms Adaptation models
Autonomous aerial vehicles
Computational modeling
Stability analysis
Trajectory
Trajectory tracking
Visualization
Title Vision-Inertial-based Adaptive State Estimation of Hexacopter with a Cable-Suspended Load
URI https://ieeexplore.ieee.org/document/9872194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB49mu68km2MpLVWsSLVSTyXJZEGU3aK7IP56k-xaUTx4CSEEEmaYfJlkvhmEzhUwrlUEJGMsJKlOBREhcNtInWVUZTJzROHZDZsu0qslXXbQxYYLY4zxwWcmcF3_lw-lrt1T2cD6x9bA0i20xTPWcLVa0m8UisF8NJxTa_fUen1xHLSTf1RN8aAx2UGzr-WaWJHnoK5UoD9-ZWL87352Uf-bnodvN8Czhzqm6KHHB88SJ5eFi5SWL8ThE-AhyLU70bC_VeKxteiGrIjLHE_Nuz0Q11a02L3HYolHjklF7uo3XxoX8HUpoY8Wk_H9aEraugnkyboLFRFCJorLNIbQWCOQUSx1LrhJaB4yRSVQESUgdBylUkiqwORKWC851RIsnkOyj7pFWZgDhCkY5RK2h7nhaai5YIbbC5_KgBn3pXiIek4sq3WTGmPVSuTo7-FjtO1UQ3xeyhPUrV5rc2oxvVJnXpmfl62jzg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcGj6douaZvjGBudbkPmJvM0krwURGmHtiD-9SZtnSgevIQQAgnv8fLlJe97D6ErCUGopAckCgKXUEU54S6EphEqipiMRGSJwpNpEC_ozZItG-h6w4XRWpfBZ9qx3fIvHzJV2KeyjvGPjYHRLbTNKKWsYmvVtF_P5Z1ZvzdjxvKZ8ft836mn_6ibUsLGcA9NvhasokWenSKXjvr4lYvxvzvaR-1vgh6-20DPAWrotIUeH0qeOBmlNlZavBCLUIB7INb2TMPlvRIPjE1XdEWcJTjW7-ZIXBvhYvsiiwXuWy4VuS_eyuK4gMeZgDZaDAfzfkzqygnkyTgMOeFcdGUoqA-uNmYgPF-ohIe6yxI3kEwA414XuPI9KrhgEnQiufGTqRJgEB26h6iZZqk-QpiBljZlu5vokLoq5IEOzZVPRhBo-6l4jFpWLKt1lRxjVUvk5O_hS7QTzyfj1Xg0vT1Fu1ZNpMxSeYaa-Wuhzw3C5_KiVOwnWaanGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Real-time+Computing+and+Robotics+%28RCAR%29&rft.atitle=Vision-Inertial-based+Adaptive+State+Estimation+of+Hexacopter+with+a+Cable-Suspended+Load&rft.au=Wang%2C+Siqiang&rft.au=Liu%2C+Jianheng&rft.au=Jiang%2C+Xin&rft.au=Chen%2C+Haoyao&rft.date=2022-07-17&rft.pub=IEEE&rft.spage=168&rft.epage=173&rft_id=info:doi/10.1109%2FRCAR54675.2022.9872194&rft.externalDocID=9872194