Color Restoration Method for Endoscope Image Using Multiscale Discriminator Based Model Compression Strategy

Color restoration of endoscopic images is an urgent clinical need during photodynamic surgery. In recent years, deep learning methods achieved notable results in the fields of image processing. The model compression algorithm and hardware performance enhancement improved the model inference speed. I...

Full description

Saved in:
Bibliographic Details
Published in2022 7th International Conference on Computational Intelligence and Applications (ICCIA) pp. 161 - 166
Main Authors Hao, Pengcheng, Ai, Danni, Zang, Liugeng, Fan, Jingfan, Yang, Jian
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.06.2022
Subjects
Online AccessGet full text
DOI10.1109/ICCIA55271.2022.9828438

Cover

Abstract Color restoration of endoscopic images is an urgent clinical need during photodynamic surgery. In recent years, deep learning methods achieved notable results in the fields of image processing. The model compression algorithm and hardware performance enhancement improved the model inference speed. It is possible to apply deep learning methods to the task of endoscopic image color restoration during surgery. However, experiments show that model compression can lead to image deterioration. To solve this issue, we propose a fast color restoration method for endoscopic images, which use multiscale discriminator based on model compression. Initially, we train a CycleGAN teacher network with multiscale discriminator. Then, we obtain the student model through knowledge distillation and neural architecture search. We use the trained teacher discriminator to guide the student model and add feature matching loss to stabilize the training process. Experiments show that our method ameliorates the performance of compressed models.
AbstractList Color restoration of endoscopic images is an urgent clinical need during photodynamic surgery. In recent years, deep learning methods achieved notable results in the fields of image processing. The model compression algorithm and hardware performance enhancement improved the model inference speed. It is possible to apply deep learning methods to the task of endoscopic image color restoration during surgery. However, experiments show that model compression can lead to image deterioration. To solve this issue, we propose a fast color restoration method for endoscopic images, which use multiscale discriminator based on model compression. Initially, we train a CycleGAN teacher network with multiscale discriminator. Then, we obtain the student model through knowledge distillation and neural architecture search. We use the trained teacher discriminator to guide the student model and add feature matching loss to stabilize the training process. Experiments show that our method ameliorates the performance of compressed models.
Author Zang, Liugeng
Ai, Danni
Yang, Jian
Hao, Pengcheng
Fan, Jingfan
Author_xml – sequence: 1
  givenname: Pengcheng
  surname: Hao
  fullname: Hao, Pengcheng
  email: Patrickhaopc@163.com
  organization: School of Optics and Photonics, Beijing Institute of Technology,Beijing,China
– sequence: 2
  givenname: Danni
  surname: Ai
  fullname: Ai, Danni
  email: danni@bit.edu.cn
  organization: School of Optics and Photonics, Beijing Institute of Technology,Beijing,China
– sequence: 3
  givenname: Liugeng
  surname: Zang
  fullname: Zang, Liugeng
  email: zangliugeng@163.com
  organization: School of Optics and Photonics, Beijing Institute of Technology,Beijing,China
– sequence: 4
  givenname: Jingfan
  surname: Fan
  fullname: Fan, Jingfan
  email: fjf@bit.edu.cn
  organization: School of Optics and Photonics, Beijing Institute of Technology,Beijing,China
– sequence: 5
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  email: jyang@bit.edu.cn
  organization: School of Optics and Photonics, Beijing Institute of Technology,Beijing,China
BookMark eNotj9FKwzAYhSPohZs-gRfmBTqTNG2SyxnnLKwIOq9H2vytgbQpTbzY21txVx8cOB_nrND1GEZA6JGSDaVEPVVaV9uiYIJuGGFsoySTPJdXaEXLsuCqkFzcIq-DDzP-gJjCbJILI64hfQeLuyXejTbENkyAq8H0gL-iG3tc__jkYms84JeFsxvcaJY6fjYRLK6DBY91GKYZYvwzfqZFDf35Dt10xke4v3CNjq-7o37LDu_7Sm8PmaNUpkzlxDbCWiataA0XkreclpRwIEbIJi-BlZzILjeWNFy1JaiCQqFs1ygpmnyNHv61DgBO07LPzOfT5X_-C01TV4M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIA55271.2022.9828438
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665495847
9781665495844
EndPage 166
ExternalDocumentID 9828438
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-930db7dd28d7ca4784c416104e0a78b36e26408f3ad0b49c6e951e59dfb987b3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:52 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-930db7dd28d7ca4784c416104e0a78b36e26408f3ad0b49c6e951e59dfb987b3
PageCount 6
ParticipantIDs ieee_primary_9828438
PublicationCentury 2000
PublicationDate 2022-June-24
PublicationDateYYYYMMDD 2022-06-24
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-24
  day: 24
PublicationDecade 2020
PublicationTitle 2022 7th International Conference on Computational Intelligence and Applications (ICCIA)
PublicationTitleAbbrev ICCIA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8177606
Snippet Color restoration of endoscopic images is an urgent clinical need during photodynamic surgery. In recent years, deep learning methods achieved notable results...
SourceID ieee
SourceType Publisher
StartPage 161
SubjectTerms color restoration
Deep learning
endoscope image
Endoscopes
generative adversarial network
Image coding
Image color analysis
Image quality
network compression
Surgery
Training
Title Color Restoration Method for Endoscope Image Using Multiscale Discriminator Based Model Compression Strategy
URI https://ieeexplore.ieee.org/document/9828438
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDzaLm2zJjlq3diEiciE3UbSvMJwdjK7g_715qV1onjwUkJpSXkP3o_m-95HyKUwcWQTbgMTSYuUHB5oZcFdIlCiyHHeCKIt7tPRE7-b9WctcrXlwgCAB59BiEt_lm9X-QZ_lfWUaw94InfIjhCq5mo1kK2Iqd44y8bXOFAM2744Dpunf8im-Kwx3COTr_1qsMhzuKlMmH_8GsX43w_aJ91vfh592GaeA9KCskOWmYtja_ropWK8venEy0NTV5fSQWlXnoFCxy8uhFAPFaCefvvm3AT0doEBBIEx7nV645KbpSiUtqQYMmq0bEmbYbbvXTIdDqbZKGi0FIKFayGqQCXMGmFtLK3INReS59jaMA5MC2mSFFxlxGSRaMsMV3kKrvSCvrKFUVKY5JC0y1UJR4SiaJWNIihScOWgTjTPCw0MJB7SQsGOSQcNNX-tp2XMGxud_H37lOyisxB8FfMz0q7WGzh3ab4yF96_n_s_q2c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcGj7dI2a5Oj1o1VtyEyYbfRNK8wnJ3M7qB_vXlpVRQPXkooLSnvwfvRfN_7CLmIlO_pgGtHeUIjJYc7qdRgLh7IKM9w3giiLcbh4JHfTrvTBrn84sIAgAWfgYtLe5avl9kaf5V1pGkPeCA2yGbXdBVRxdaqQVsek50kjpMrHCmGjZ_vu_XzP4RTbN7o75DR544VXOTJXZfKzd5_DWP87yftkvY3Q4_ef-WePdKAokUWsYlkK_pgxWKsxenICkRTU5nSXqGXloNCk2cTRKgFC1BLwH01jgJ6M8cQgtAY8zq9NulNU5RKW1AMGhVetqD1ONu3Npn0e5N44NRqCs7cNBGlIwOmVaS1L3SUpTwSPMPmhnFgaSRUEIKpjZjIg1QzxWUWgim-oCt1rqSIVLBPmsWygANCUbZKex7kIZiCMA1SnuUpMBB4TAs5OyQtNNTspZqXMattdPT37XOyNZiMhrNhMr47JtvoOIRi-fyENMvVGk5N0i_VmfX1Bye_rrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+7th+International+Conference+on+Computational+Intelligence+and+Applications+%28ICCIA%29&rft.atitle=Color+Restoration+Method+for+Endoscope+Image+Using+Multiscale+Discriminator+Based+Model+Compression+Strategy&rft.au=Hao%2C+Pengcheng&rft.au=Ai%2C+Danni&rft.au=Zang%2C+Liugeng&rft.au=Fan%2C+Jingfan&rft.date=2022-06-24&rft.pub=IEEE&rft.spage=161&rft.epage=166&rft_id=info:doi/10.1109%2FICCIA55271.2022.9828438&rft.externalDocID=9828438