Dynamic modeling algorithm based on time difference and fuzzy-tree model

In order to improve the dynamic modeling performance of fuzzy tree (FT) model, a dynamic modeling algorithm based on time difference (TD) method and FT model is proposed. TD method can indirectly utilize the historical information of system without increasing the input dimension of FT model, so as t...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) pp. 567 - 571
Main Authors Huang, Kezhen, Zhao, Yongsong, Huang, Jie, Zhang, Cong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2019
Subjects
Online AccessGet full text
DOI10.1109/IMCEC46724.2019.8984000

Cover

Abstract In order to improve the dynamic modeling performance of fuzzy tree (FT) model, a dynamic modeling algorithm based on time difference (TD) method and FT model is proposed. TD method can indirectly utilize the historical information of system without increasing the input dimension of FT model, so as to improve the accuracy of dynamic modeling. Firstly, the influence of TD method on signal-to-noise ratio (SNR) was studied by theoretical derivation and simulation analysis. Then TD-FT algorithm was applied to Mackey-Glass chaotic time series modeling and dynamic modeling of denitrification system in coal-fired power plant under variable-load condition. The simulation results show that the modeling accuracy of TD-FT algorithm is higher for chaotic time series modeling, but it is susceptible to noise. For the dynamic modeling of denitrification system, the input dimension of TD-FT algorithm is lower, the modeling accuracy is higher and it is insensitive to noise.
AbstractList In order to improve the dynamic modeling performance of fuzzy tree (FT) model, a dynamic modeling algorithm based on time difference (TD) method and FT model is proposed. TD method can indirectly utilize the historical information of system without increasing the input dimension of FT model, so as to improve the accuracy of dynamic modeling. Firstly, the influence of TD method on signal-to-noise ratio (SNR) was studied by theoretical derivation and simulation analysis. Then TD-FT algorithm was applied to Mackey-Glass chaotic time series modeling and dynamic modeling of denitrification system in coal-fired power plant under variable-load condition. The simulation results show that the modeling accuracy of TD-FT algorithm is higher for chaotic time series modeling, but it is susceptible to noise. For the dynamic modeling of denitrification system, the input dimension of TD-FT algorithm is lower, the modeling accuracy is higher and it is insensitive to noise.
Author Zhao, Yongsong
Huang, Jie
Huang, Kezhen
Zhang, Cong
Author_xml – sequence: 1
  givenname: Kezhen
  surname: Huang
  fullname: Huang, Kezhen
  organization: China ship development and design center,Wuhan,China
– sequence: 2
  givenname: Yongsong
  surname: Zhao
  fullname: Zhao, Yongsong
  organization: China ship development and design center,Wuhan,China
– sequence: 3
  givenname: Jie
  surname: Huang
  fullname: Huang, Jie
  organization: China ship development and design center,Wuhan,China
– sequence: 4
  givenname: Cong
  surname: Zhang
  fullname: Zhang, Cong
  organization: China ship development and design center,Wuhan,China
BookMark eNotj71OwzAURo0EA5Q-AQN-gYR7Y7uxRxQKrVTEAnPln-tiKXGQG4b06UFqp-8s50jfHbvOYybGHhFqRDBP2_du3clV28i6ATS1NloCwBVbmlZj22gEhQJu2eZlznZIng9joD7lA7f9YSxp-h64s0cKfMx8SgPxkGKkQtkTtznw-Hs6zdVUiM7qPbuJtj_S8rIL9vW6_uw21e7jbds976qEqKdKS70iH2XrjJQgvHHKkiEXdIwCoydnFEontW-kAqHA6wD_BOga6RWJBXs4dxMR7X9KGmyZ95d_4g_zSErK
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IMCEC46724.2019.8984000
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728105130
1728105137
EndPage 571
ExternalDocumentID 8984000
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-8486ecf47b94403c9b5ae9ebd8ff31fceb9514b48c2450350c8d045001b24c5e3
IEDL.DBID RIE
IngestDate Wed Aug 06 17:53:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-8486ecf47b94403c9b5ae9ebd8ff31fceb9514b48c2450350c8d045001b24c5e3
PageCount 5
ParticipantIDs ieee_primary_8984000
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)
PublicationTitleAbbrev IMCEC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7035741
Snippet In order to improve the dynamic modeling performance of fuzzy tree (FT) model, a dynamic modeling algorithm based on time difference (TD) method and FT model...
SourceID ieee
SourceType Publisher
StartPage 567
SubjectTerms Accuracy
Chaotic communication
chaotic time series
Denitrification
denitrification system
dynamic modeling
fuzzy-tree model
Heuristic algorithms
Power generation
Robustness
Signal to noise ratio
Simulation
time difference
Time series analysis
Timing
Title Dynamic modeling algorithm based on time difference and fuzzy-tree model
URI https://ieeexplore.ieee.org/document/8984000
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyZALeItD4ykTR0nOc-hVUEqYqBSt8rnByAgQSgZ6K_HjtsiEAObZdlO_NLn83fnj5BLljNkGSSRhpxFnBmI0DOFmCoAGVtMwMc7z-6y6ZzfLtJFh1xtY2GMMa3zmRn4ZMvl60o1_qpsCMKZI7Ez0HdyyEKs1tplaxSL4c2sGBdu3zN_VTJySyCU_iGb0qLGZI_MNt8LziIvg6bGgVr9eorxvz-0T_rf8Xn0fos8B6Rjyh6ZXgdxedqK27h8Kl8fK2f7P71Rj1WaViX1UvJ0I4riWpGlprZZrT4jz06Hqn0yn4wfimm01kmInp15UEfAITPK8hwF53GiBKbSCIMarE1GVhl0xyiOHBTjqWcSFWh3knMAhYyr1CSHpFtWpTkiNBGQSwuuV6i40lIyoZn1ZJpEqyUek54fheV7eApjuR6Ak7-zT8mun4ng-3ZGuvVHY84dhtd40U7eF28Hni4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSkBozf9uDRwug61p0RMpQRD5BwI337oUbdjNkO8uttV8BoPHhrmrZbv_L07fO-fRC6pjEF2uchUTymhFHNCTimECLJuQgMhNzFO2fTfjpnd4to0UA321gYrXXtfKY7Lllz-aqQlbsq6_LEmiOBNdB3IsZY5KO11k5bvSDpjrPBcGB3PnWXJT27CHz5H8IpNW6M9lG2-aJ3F3npVCV05OrXY4z__aUD1P6O0MMPW-w5RA2dt1B66-XlcS1vY_OxeH0srPX_9IYdWilc5NiJyeONLIptReQKm2q1-iSOn_ZV22g-Gs4GKVkrJZBnayCUhDPe19KwGBLGglAmEAmdaFDcmLBnpAZ7kGLAuKQsclyi5Mqe5SxEAWUy0uERauZFro8RDhMeC8Ntr0AyqYSgiaLG0WkCjBJwglpuFJbv_jGM5XoATv_OvkK76SybLCfj6f0Z2nOz4j3hzlGz_Kj0hUX0Ei7rifwC5rGhew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+3rd+Advanced+Information+Management%2C+Communicates%2C+Electronic+and+Automation+Control+Conference+%28IMCEC%29&rft.atitle=Dynamic+modeling+algorithm+based+on+time+difference+and+fuzzy-tree+model&rft.au=Huang%2C+Kezhen&rft.au=Zhao%2C+Yongsong&rft.au=Huang%2C+Jie&rft.au=Zhang%2C+Cong&rft.date=2019-10-01&rft.pub=IEEE&rft.spage=567&rft.epage=571&rft_id=info:doi/10.1109%2FIMCEC46724.2019.8984000&rft.externalDocID=8984000