Adaptive Learning Rate for Dealing with Imbalanced Data in Classification Problems
This research modified a backpropagation learning algorithm in order to increase its ability to deal with imbalanced data problems. We used the backpropagation algorithm and a concept of multiple adaptive learning rates to train the feedforward neural network. Using multiple adaptive learning rates...
Saved in:
| Published in | 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering pp. 229 - 232 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
03.03.2021
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ECTIDAMTNCON51128.2021.9425715 |
Cover
| Abstract | This research modified a backpropagation learning algorithm in order to increase its ability to deal with imbalanced data problems. We used the backpropagation algorithm and a concept of multiple adaptive learning rates to train the feedforward neural network. Using multiple adaptive learning rates allowed us to achieve a classification model that had fewer problems when dealing with an imbalanced dataset. The experimental results showed that the proposed method performed significantly better than the conventional backpropagation neural network in all tests. |
|---|---|
| AbstractList | This research modified a backpropagation learning algorithm in order to increase its ability to deal with imbalanced data problems. We used the backpropagation algorithm and a concept of multiple adaptive learning rates to train the feedforward neural network. Using multiple adaptive learning rates allowed us to achieve a classification model that had fewer problems when dealing with an imbalanced dataset. The experimental results showed that the proposed method performed significantly better than the conventional backpropagation neural network in all tests. |
| Author | Thammano, Arit Jantanasukon, Ratanon |
| Author_xml | – sequence: 1 givenname: Ratanon surname: Jantanasukon fullname: Jantanasukon, Ratanon email: 160070079@kmitl.ac.th organization: King Mongkut's Institute of Technology Ladkrabang,Computational Intelligence Laboratory, Faculty of Information Technology,Bangkok,Thailand,10520 – sequence: 2 givenname: Arit surname: Thammano fullname: Thammano, Arit email: arit@it.kmitl.ac.th organization: King Mongkut's Institute of Technology Ladkrabang,Computational Intelligence Laboratory, Faculty of Information Technology,Bangkok,Thailand,10520 |
| BookMark | eNotj0FLwzAYQCPoQed-gZecvLX2y5I2OZZ2aqFuMup5fGm_aqBNRxsU_73IdnrwDg_eHbv2kyfGHiGJARLztC2aqszfml2x3ykAoWORCIiNFCoDdcXWJtOQpkqCSo25ZYe8w1Nw38Rrwtk7_8kPGIj308xLwuFf_LjwxavR4oC-pY6XGJA7z4sBl8X1rsXgJs_f58kONC737KbHYaH1hSv28bxtiteo3r9URV5HDkCHKOt6rTVlrQSypBCtkSgBZKdJJgq00FZI1aOwpjeQybRLFaQCSNiEbLdZsYdz1xHR8TS7Eeff4-V08wdD_VAR |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ECTIDAMTNCON51128.2021.9425715 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665415699 166541569X |
| EndPage | 232 |
| ExternalDocumentID | 9425715 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-7df888e7c41ebe5aab94a4114d8e4051828b245fa2b9f91746d651621e2b0ebd3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:50 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-7df888e7c41ebe5aab94a4114d8e4051828b245fa2b9f91746d651621e2b0ebd3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9425715 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-March-3 |
| PublicationDateYYYYMMDD | 2021-03-03 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-March-3 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering |
| PublicationTitleAbbrev | ECTI DAMT & NCON |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7534531 |
| Snippet | This research modified a backpropagation learning algorithm in order to increase its ability to deal with imbalanced data problems. We used the backpropagation... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 229 |
| SubjectTerms | Adaptive learning Adaptive learning rate Backpropagation Backpropagation algorithm Backpropagation algorithms Classification Digital art Distance measurement Feedforward neural network Imbalanced data Media Training |
| Title | Adaptive Learning Rate for Dealing with Imbalanced Data in Classification Problems |
| URI | https://ieeexplore.ieee.org/document/9425715 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qD-JJpRXf7EE8uWmTbDbJsfRBK7RIaaG3so-JFDEtml789c6ksaJ48BaWvNgvZL5v95sZxu6ySAcGI5mwLgEhE-cL7VJfOA2p9jVEylHu8HiihnP5uIgWNfawz4UBgNJ8Bh4dlnv5bm23tFTWSukDo4zygzhRu1ytQ3Zflc1s9buzUa8znqEYnhCNIONW4HvVRT-6p5TBY3DMxl-P3XlGXrxtYTz78asi43_f64Q1v9P0-NM-AJ2yGuQNNu04vaF_GK9Kpz7zKfJJjuSU95AV0gAtvvLRqyFbowXHe7rQfJXzskMmeYdKuOje1Gzmvcnmg_6sOxRV4wSxQr1QiNhlKGwhttJHjCKtTSq1ROWDeCBBQ0mRmEBGGcKUZqjXpHIq8lXgQ2DaYFx4xur5Oodzxq0OA0Ml5-MgxNN0qlXsVGZc2zoLylywBs3HcrOrjbGspuLy7-ErdkSYlB6u8JrVi7ct3GBQL8xtieYnEM2keg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5KBfWk0opv9yCeTNoku5vmWPqg1aZISaG3sq9IKaZF04u_3pk0VhQP3sKSF_uFzPftfjNDyF3Kpa8gkjnatKzDWsZzpIk8x0gbSU9aLgzmDsdjMZiyxxmfVcjDLhfGWluYz6yLh8VevlnpDS6VNSL8wDCjfI8zxvg2W2uf3JeFMxu9TjLstuME5PAYiQRat3zPLS_70T-lCB_9IxJ_PXjrGlm6m1y5-uNXTcb_vtkxqX8n6tHnXQg6IRWb1cikbeQa_2K0LJ76QifAKCnQU9oFXogDuPxKh68KjY3aGtqVuaSLjBY9MtE9VACG98Z2M-91Mu33ks7AKVsnOAtQDLkTmhSkrQ018wAlLqWKmGSgfQARoGggKlrKZzwFoKIUFBsTRnBP-J71VdMqE5ySarbK7BmhWga-wqLzoR_AaTKSIjQiVaapjbZCnZMazsd8va2OMS-n4uLv4VtyMEji0Xw0HD9dkkPEp3B0BVekmr9t7DWE-FzdFMh-At1Kp8c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+Joint+International+Conference+on+Digital+Arts%2C+Media+and+Technology+with+ECTI+Northern+Section+Conference+on+Electrical%2C+Electronics%2C+Computer+and+Telecommunication+Engineering&rft.atitle=Adaptive+Learning+Rate+for+Dealing+with+Imbalanced+Data+in+Classification+Problems&rft.au=Jantanasukon%2C+Ratanon&rft.au=Thammano%2C+Arit&rft.date=2021-03-03&rft.pub=IEEE&rft.spage=229&rft.epage=232&rft_id=info:doi/10.1109%2FECTIDAMTNCON51128.2021.9425715&rft.externalDocID=9425715 |