Adaptive Learning Rate for Dealing with Imbalanced Data in Classification Problems

This research modified a backpropagation learning algorithm in order to increase its ability to deal with imbalanced data problems. We used the backpropagation algorithm and a concept of multiple adaptive learning rates to train the feedforward neural network. Using multiple adaptive learning rates...

Full description

Saved in:
Bibliographic Details
Published in2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering pp. 229 - 232
Main Authors Jantanasukon, Ratanon, Thammano, Arit
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.03.2021
Subjects
Online AccessGet full text
DOI10.1109/ECTIDAMTNCON51128.2021.9425715

Cover

Abstract This research modified a backpropagation learning algorithm in order to increase its ability to deal with imbalanced data problems. We used the backpropagation algorithm and a concept of multiple adaptive learning rates to train the feedforward neural network. Using multiple adaptive learning rates allowed us to achieve a classification model that had fewer problems when dealing with an imbalanced dataset. The experimental results showed that the proposed method performed significantly better than the conventional backpropagation neural network in all tests.
AbstractList This research modified a backpropagation learning algorithm in order to increase its ability to deal with imbalanced data problems. We used the backpropagation algorithm and a concept of multiple adaptive learning rates to train the feedforward neural network. Using multiple adaptive learning rates allowed us to achieve a classification model that had fewer problems when dealing with an imbalanced dataset. The experimental results showed that the proposed method performed significantly better than the conventional backpropagation neural network in all tests.
Author Thammano, Arit
Jantanasukon, Ratanon
Author_xml – sequence: 1
  givenname: Ratanon
  surname: Jantanasukon
  fullname: Jantanasukon, Ratanon
  email: 160070079@kmitl.ac.th
  organization: King Mongkut's Institute of Technology Ladkrabang,Computational Intelligence Laboratory, Faculty of Information Technology,Bangkok,Thailand,10520
– sequence: 2
  givenname: Arit
  surname: Thammano
  fullname: Thammano, Arit
  email: arit@it.kmitl.ac.th
  organization: King Mongkut's Institute of Technology Ladkrabang,Computational Intelligence Laboratory, Faculty of Information Technology,Bangkok,Thailand,10520
BookMark eNotj0FLwzAYQCPoQed-gZecvLX2y5I2OZZ2aqFuMup5fGm_aqBNRxsU_73IdnrwDg_eHbv2kyfGHiGJARLztC2aqszfml2x3ykAoWORCIiNFCoDdcXWJtOQpkqCSo25ZYe8w1Nw38Rrwtk7_8kPGIj308xLwuFf_LjwxavR4oC-pY6XGJA7z4sBl8X1rsXgJs_f58kONC737KbHYaH1hSv28bxtiteo3r9URV5HDkCHKOt6rTVlrQSypBCtkSgBZKdJJgq00FZI1aOwpjeQybRLFaQCSNiEbLdZsYdz1xHR8TS7Eeff4-V08wdD_VAR
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ECTIDAMTNCON51128.2021.9425715
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665415699
166541569X
EndPage 232
ExternalDocumentID 9425715
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-7df888e7c41ebe5aab94a4114d8e4051828b245fa2b9f91746d651621e2b0ebd3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:50 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-7df888e7c41ebe5aab94a4114d8e4051828b245fa2b9f91746d651621e2b0ebd3
PageCount 4
ParticipantIDs ieee_primary_9425715
PublicationCentury 2000
PublicationDate 2021-March-3
PublicationDateYYYYMMDD 2021-03-03
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-March-3
  day: 03
PublicationDecade 2020
PublicationTitle 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering
PublicationTitleAbbrev ECTI DAMT & NCON
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7534531
Snippet This research modified a backpropagation learning algorithm in order to increase its ability to deal with imbalanced data problems. We used the backpropagation...
SourceID ieee
SourceType Publisher
StartPage 229
SubjectTerms Adaptive learning
Adaptive learning rate
Backpropagation
Backpropagation algorithm
Backpropagation algorithms
Classification
Digital art
Distance measurement
Feedforward neural network
Imbalanced data
Media
Training
Title Adaptive Learning Rate for Dealing with Imbalanced Data in Classification Problems
URI https://ieeexplore.ieee.org/document/9425715
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qD-JJpRXf7EE8uWmTbDbJsfRBK7RIaaG3so-JFDEtml789c6ksaJ48BaWvNgvZL5v95sZxu6ySAcGI5mwLgEhE-cL7VJfOA2p9jVEylHu8HiihnP5uIgWNfawz4UBgNJ8Bh4dlnv5bm23tFTWSukDo4zygzhRu1ytQ3Zflc1s9buzUa8znqEYnhCNIONW4HvVRT-6p5TBY3DMxl-P3XlGXrxtYTz78asi43_f64Q1v9P0-NM-AJ2yGuQNNu04vaF_GK9Kpz7zKfJJjuSU95AV0gAtvvLRqyFbowXHe7rQfJXzskMmeYdKuOje1Gzmvcnmg_6sOxRV4wSxQr1QiNhlKGwhttJHjCKtTSq1ROWDeCBBQ0mRmEBGGcKUZqjXpHIq8lXgQ2DaYFx4xur5Oodzxq0OA0Ml5-MgxNN0qlXsVGZc2zoLylywBs3HcrOrjbGspuLy7-ErdkSYlB6u8JrVi7ct3GBQL8xtieYnEM2keg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5KBfWk0opv9yCeTNoku5vmWPqg1aZISaG3sq9IKaZF04u_3pk0VhQP3sKSF_uFzPftfjNDyF3Kpa8gkjnatKzDWsZzpIk8x0gbSU9aLgzmDsdjMZiyxxmfVcjDLhfGWluYz6yLh8VevlnpDS6VNSL8wDCjfI8zxvg2W2uf3JeFMxu9TjLstuME5PAYiQRat3zPLS_70T-lCB_9IxJ_PXjrGlm6m1y5-uNXTcb_vtkxqX8n6tHnXQg6IRWb1cikbeQa_2K0LJ76QifAKCnQU9oFXogDuPxKh68KjY3aGtqVuaSLjBY9MtE9VACG98Z2M-91Mu33ks7AKVsnOAtQDLkTmhSkrQ018wAlLqWKmGSgfQARoGggKlrKZzwFoKIUFBsTRnBP-J71VdMqE5ySarbK7BmhWga-wqLzoR_AaTKSIjQiVaapjbZCnZMazsd8va2OMS-n4uLv4VtyMEji0Xw0HD9dkkPEp3B0BVekmr9t7DWE-FzdFMh-At1Kp8c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+Joint+International+Conference+on+Digital+Arts%2C+Media+and+Technology+with+ECTI+Northern+Section+Conference+on+Electrical%2C+Electronics%2C+Computer+and+Telecommunication+Engineering&rft.atitle=Adaptive+Learning+Rate+for+Dealing+with+Imbalanced+Data+in+Classification+Problems&rft.au=Jantanasukon%2C+Ratanon&rft.au=Thammano%2C+Arit&rft.date=2021-03-03&rft.pub=IEEE&rft.spage=229&rft.epage=232&rft_id=info:doi/10.1109%2FECTIDAMTNCON51128.2021.9425715&rft.externalDocID=9425715