Entropy-based DDoS Attack Detection in SDN using Dynamic Threshold

The centralized structure of software defined networks makes them vulnerable to distributed denial of service attacks. Given that these attacks can easily destroy the computational and communicational resources of controller and switches, they make the network fail in a short time. Hence, it is vita...

Full description

Saved in:
Bibliographic Details
Published in2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS) pp. 1 - 5
Main Authors Hemmati, Zahra, Mirjalily, Ghasem, Mohtajollah, Zahra
Format Conference Proceeding
LanguageEnglish
Published IEEE 29.12.2021
Subjects
Online AccessGet full text
DOI10.1109/ICSPIS54653.2021.9729355

Cover

Abstract The centralized structure of software defined networks makes them vulnerable to distributed denial of service attacks. Given that these attacks can easily destroy the computational and communicational resources of controller and switches, they make the network fail in a short time. Hence, it is vital to protect the controller. Utilizing the unique features of software defined networks, this paper propounds an effective method to detect distributed denial of services attacks. For this purpose, entropy was used to detect attacks. Furthermore, this method utilizes a dynamic threshold instead of a static one to distinguish between normal and attack traffic. The dynamic threshold heightens the accuracy of attack detection in the proposed algorithm to 98% on average while the accuracy in the benchmark algorithm using entropy and the static threshold is 96%.
AbstractList The centralized structure of software defined networks makes them vulnerable to distributed denial of service attacks. Given that these attacks can easily destroy the computational and communicational resources of controller and switches, they make the network fail in a short time. Hence, it is vital to protect the controller. Utilizing the unique features of software defined networks, this paper propounds an effective method to detect distributed denial of services attacks. For this purpose, entropy was used to detect attacks. Furthermore, this method utilizes a dynamic threshold instead of a static one to distinguish between normal and attack traffic. The dynamic threshold heightens the accuracy of attack detection in the proposed algorithm to 98% on average while the accuracy in the benchmark algorithm using entropy and the static threshold is 96%.
Author Mohtajollah, Zahra
Hemmati, Zahra
Mirjalily, Ghasem
Author_xml – sequence: 1
  givenname: Zahra
  surname: Hemmati
  fullname: Hemmati, Zahra
  email: zahra.hemmati@stu.yazd.ac.ir
  organization: Yazd University,Department of Computer Engineering,Yazd,Iran
– sequence: 2
  givenname: Ghasem
  surname: Mirjalily
  fullname: Mirjalily, Ghasem
  email: mirjalily@yazd.ac.ir
  organization: Yazd University,Department of Electrical Engineering,Yazd,Iran
– sequence: 3
  givenname: Zahra
  surname: Mohtajollah
  fullname: Mohtajollah, Zahra
  email: z.mohtajollah@stu.yazd.ac.ir
  organization: Yazd University,Department of Computer Engineering,Yazd,Iran
BookMark eNotz7FOwzAUQFEj0QFKv4DFP5DgZ8eOPZa40EgVIKWdq5fYoRatUyVmyN8z0OluR7qP5D4O0RNCgeUAzLzUVfNVN7JQUuSccchNyY2Q8o6sTKlBKVkwI3TxQF43MY3Ddc5anLyj1g4NXaeE3Q-1PvkuhSHSEGljP-jvFOI3tXPES-jo_jT66TSc3RNZ9Hie_OrWJTm8bfbVNtt9vtfVepcFAJ0yhYYxjhJaI7B1KBhIcMo5XkqF4LFoleYONNdd3ztmNOtcK5wSUjHkKJbk-d8N3vvjdQwXHOfj7Uz8AZYWSBU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSPIS54653.2021.9729355
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665409384
166540938X
EndPage 5
ExternalDocumentID 9729355
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-6a9002a51b93abda30151d6dd2756a1ea4b682d1828cffd0980cdb3d63560a2a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:35 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-6a9002a51b93abda30151d6dd2756a1ea4b682d1828cffd0980cdb3d63560a2a3
PageCount 5
ParticipantIDs ieee_primary_9729355
PublicationCentury 2000
PublicationDate 2021-Dec.-29
PublicationDateYYYYMMDD 2021-12-29
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)
PublicationTitleAbbrev ICSPIS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8188448
Snippet The centralized structure of software defined networks makes them vulnerable to distributed denial of service attacks. Given that these attacks can easily...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Controller
Deep learning
Denial-of-service attack
Distributed Denial of Service Attacks
Dynamic Threshold
Entropy
Feature extraction
Heuristic algorithms
Signal processing
Signal processing algorithms
Software Defined Networks
Title Entropy-based DDoS Attack Detection in SDN using Dynamic Threshold
URI https://ieeexplore.ieee.org/document/9729355
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NawIxEA3qqae2aOk3OfTYrNnvzbF1FS0owip4k0kmW0RYpV0P7a9vsquWlh56C0kgCUPyMsmbeYQ8oEH9WMaKySD0mNWwZiC1yyRXISahaRY2dng8iYbz4GURLhrk8RgLo7WuyGfascXqLx83amefyrrC3AQNPjZJM06iOlbrQM7hojvqZdNRZsW9feP3ea6z7_5DN6WCjcEpGR8GrNkia2dXSkd9_srF-N8ZnZHOd4AenR6h55w0dNEmz33LOt9-MItMSNN0k9GnsgS1pqkuK8pVQVcFzdIJtXT3V5rWcvR0Zgz6bv-hOmQ-6M96Q7aXSGAr4xmULAJhjjQIXSl8kAhmu4YuRog2qzu4GgIZJR4aJyJReY5cJFyh9NFmpePggX9BWsWm0JeEBhw5JEpDjDzI3VwEQkGsPY3gJQDqirTt-pfbOgvGcr_067-rb8iJtYElfnjilrTKt52-M_BdyvvKbl_gt5wF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pSA8a3PXi0S3e3--hRWQwoEJKFhBuZPtYQkoXoctBfb7sLGI0Hb02bpm0m7ddpv5kPoTtlUD8SkSSCBR6xGtYEhHaJoDJQcWCauY0dHgzD7oQ9T4NpDd3vYmG01iX5TDu2WP7lq6Vc26eyFjc3QYOPe2g_YIwFVbTWlp5DeavXTke91Mp7-8bz81xn0-GHckoJHE9HaLAdsuKLLJx1IRz5-Ssb43_ndIya3yF6eLQDnxNU03kDPXYs73z1QSw2KZwkyxQ_FAXIBU50UZKucjzPcZoMsSW8v-KkEqTHY2PSd_sT1USTp8643SUbkQQyN75BQULg5lCDwBXcB6HAbNjAVaFSNq87uBqYCGNPGTcillmmKI-pVMJXNi8dBQ_8U1TPl7k-Q5hRRSGWGiJFWeZmnHEJkfa0Ai8GkOeoYdc_W1V5MGabpV_8XX2LDrrjQX_W7w1fLtGhtYelgXj8CtWLt7W-NmBeiJvShl89EZ9S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+7th+International+Conference+on+Signal+Processing+and+Intelligent+Systems+%28ICSPIS%29&rft.atitle=Entropy-based+DDoS+Attack+Detection+in+SDN+using+Dynamic+Threshold&rft.au=Hemmati%2C+Zahra&rft.au=Mirjalily%2C+Ghasem&rft.au=Mohtajollah%2C+Zahra&rft.date=2021-12-29&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICSPIS54653.2021.9729355&rft.externalDocID=9729355