Distributed Fast-Tracking Alternating Direction Method of Multipliers (ADMM) Algorithm with Optimal Convergence Rate
In this paper, we consider a distributed optimization problem with coupled constraints, where a network of agents aim to cooperatively minimize the sum of their local objective functions, subject to individual constraints. The primary goal is to improve the convergence rate of the existing Tracking...
        Saved in:
      
    
          | Published in | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics pp. 976 - 981 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        17.10.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2577-1655 | 
| DOI | 10.1109/SMC52423.2021.9658615 | 
Cover
| Abstract | In this paper, we consider a distributed optimization problem with coupled constraints, where a network of agents aim to cooperatively minimize the sum of their local objective functions, subject to individual constraints. The primary goal is to improve the convergence rate of the existing Tracking Alternating Direction Method of Multipliers (TADMM) algorithm to solve the above distributed optimization problem. To this end, an upper bound on the convergence rate factor of the TADMM algorithm is derived in terms of the weight matrix of the network. To achieve faster convergence, the optimal weight matrix is computed using a semi-definite programming (SDP) formulation. Lastly, we implement the optimization problem in a Distributed Model-Predictive Control problem for a group of aircraft in formation flight and solve it using both Fast-Tracking ADMM (F-TADMM) and TADMM to demonstrate faster convergence of the proposed algorithm. | 
    
|---|---|
| AbstractList | In this paper, we consider a distributed optimization problem with coupled constraints, where a network of agents aim to cooperatively minimize the sum of their local objective functions, subject to individual constraints. The primary goal is to improve the convergence rate of the existing Tracking Alternating Direction Method of Multipliers (TADMM) algorithm to solve the above distributed optimization problem. To this end, an upper bound on the convergence rate factor of the TADMM algorithm is derived in terms of the weight matrix of the network. To achieve faster convergence, the optimal weight matrix is computed using a semi-definite programming (SDP) formulation. Lastly, we implement the optimization problem in a Distributed Model-Predictive Control problem for a group of aircraft in formation flight and solve it using both Fast-Tracking ADMM (F-TADMM) and TADMM to demonstrate faster convergence of the proposed algorithm. | 
    
| Author | Thapliyal, Omanshu Shethia, Shreyansh Gupta, Akshita Hwang, Inseok  | 
    
| Author_xml | – sequence: 1 givenname: Shreyansh surname: Shethia fullname: Shethia, Shreyansh email: sshethia@purdue.edu organization: Purdue University,Aeronautics and Astronautics,West Lafayette,IN,USA – sequence: 2 givenname: Akshita surname: Gupta fullname: Gupta, Akshita email: gupta417@purdue.edu organization: Purdue University,Aeronautics and Astronautics,West Lafayette,IN,USA – sequence: 3 givenname: Omanshu surname: Thapliyal fullname: Thapliyal, Omanshu email: othapliy@purdue.edu organization: Purdue University,Aeronautics and Astronautics,West Lafayette,IN,USA – sequence: 4 givenname: Inseok surname: Hwang fullname: Hwang, Inseok email: ihwang@purdue.edu organization: Purdue University,Aeronautics and Astronautics,West Lafayette,IN,USA  | 
    
| BookMark | eNotUM1OwzAYCwgktrEnQEg5wqEjP02THKeWAdKqSTDOU5p-2QJdO6UZiLeniF1sX2zZHqOLtmsBoVtKZpQS_fBW5oKljM8YYXSmM6EyKs7QVEtFs0ykKSNSnqMRE1ImNBPiCo37_oMQRlKqRigWvo_BV8cINV6YPibrYOynb7d43kQIrYl_uvABbPRdi0uIu67GncPlsYn-0HgIPb6bF2V5P1i2XfBxt8ffA-LVIfq9aXDetV8QttBawK8mwjW6dKbpYXriCXpfPK7z52S5enrJ58vEU6piknHDiIKa16AtMdZQ54yiNqsYsw4ErwyF4QWihq3MkVpwpyvORKWVllryCbr5z_UAsDmEoUz42ZxO4r96yV7X | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/SMC52423.2021.9658615 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISBN | 9781665442077 1665442077  | 
    
| EISSN | 2577-1655 | 
    
| EndPage | 981 | 
    
| ExternalDocumentID | 9658615 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS  | 
    
| ID | FETCH-LOGICAL-i118t-63a208ed3de9c0aca1ffa81c6b22cfe53ba1e110088162f0d53f9b325b9897973 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 03:03:26 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i118t-63a208ed3de9c0aca1ffa81c6b22cfe53ba1e110088162f0d53f9b325b9897973 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_9658615 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-Oct.-17 | 
    
| PublicationDateYYYYMMDD | 2021-10-17 | 
    
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-17 day: 17  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics | 
    
| PublicationTitleAbbrev | SMC | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0020418 | 
    
| Score | 2.1626577 | 
    
| Snippet | In this paper, we consider a distributed optimization problem with coupled constraints, where a network of agents aim to cooperatively minimize the sum of... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 976 | 
    
| SubjectTerms | Convex functions Network topology Prediction algorithms Programming Real-time systems Trajectory Upper bound  | 
    
| Title | Distributed Fast-Tracking Alternating Direction Method of Multipliers (ADMM) Algorithm with Optimal Convergence Rate | 
    
| URI | https://ieeexplore.ieee.org/document/9658615 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA5zJ73oHuKbHDxsYLsmafo4js0xhKqog91Gmvyqw62Vrbv415u0dT7w4C0UQkuS_l75fd-H0CWVFIRgwoopBcsNCLGENoKWIMxcEwkRFzzd0a03nrg3Uz6toastFgYAiuYzsM2wuMtXmdyYUlnPEJV4BlG-4wdeidXaJleOS4IKoUOcsPcYDbgJFXQGSIldTfyhoFI4kNE-ij5fXfaNvNqbPLbl-y9Wxv9-2wFqf0H18P3WCTVQDdIm2vvGMthEjer_XeNORTLdbaF8aBhzjdgVKDwS69zSXkuaujnuL6oioR5XFjFLcVRITeMswVHZg2g0tHGnP4yirp7ynK3m-csSm7ouvtN2aCkWeGBa2gt0J-AHHdS20WR0_TQYW5UCgzXXiUdueUxQJwDFFITSEVKQJBEBkZ7eWZkAZ7EgYEjngoB4NHEUZ0kYM8rjMAj90GeHqJ5mKRwh7CmlQ0mhGHPA1UmpjnscSDjxOAPOlThGLbOos7eSZGNWrefJ349P0a7ZWONEiH-G6vlqA-c6Osjji-JYfADUerqP | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHtSL8mH8tgcPkDhY23VsRwISVIZGIeFGuvWdEmEzMC7-ettt4kc8eGuWNFva7v3q-zwPQpc0oCAEE4ZPKRiWQ4ghlBE0BGH6mkgIP-Xp9oZ2f2zdTvikgK42WBgASJvPoKGH6V2-jIO1LpU1NVGJrRHlW9yyLJ6htTbplWkRJ8foENNtPnkdroMFlQNS0sin_tBQSV1Ibw95ny_POkdeG-vEbwTvv3gZ__t1-6j6BdbDDxs3VEIFiMpo9xvPYBmV8j94hWs5zXS9gpKu5szVclcgcU-sEkP5rUBXznF7npcJ1Ti3iXGEvVRsGsch9rIuRK2ijWvtrufV1ZTneDlLXhZYV3bxvbJECzHHHd3UnuI7AT-qsLaKxr3rUadv5BoMxkylHolhM0FNByST4AamCAQJQ-GQwFZ7G4TAmS8IaNo5xyE2DU3JWej6jHLfddyW22IHqBjFERwibEupgkkhGTPBUmmpinxMCDmxOQPOpThCFb2o07eMZmOar-fx348v0HZ_5A2mg5vh3Qna0ZusXQppnaJislzDmYoVEv88PSIfxCS93A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Distributed+Fast-Tracking+Alternating+Direction+Method+of+Multipliers+%28ADMM%29+Algorithm+with+Optimal+Convergence+Rate&rft.au=Shethia%2C+Shreyansh&rft.au=Gupta%2C+Akshita&rft.au=Thapliyal%2C+Omanshu&rft.au=Hwang%2C+Inseok&rft.date=2021-10-17&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=976&rft.epage=981&rft_id=info:doi/10.1109%2FSMC52423.2021.9658615&rft.externalDocID=9658615 |