Distributed Fast-Tracking Alternating Direction Method of Multipliers (ADMM) Algorithm with Optimal Convergence Rate

In this paper, we consider a distributed optimization problem with coupled constraints, where a network of agents aim to cooperatively minimize the sum of their local objective functions, subject to individual constraints. The primary goal is to improve the convergence rate of the existing Tracking...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings - IEEE International Conference on Systems, Man, and Cybernetics pp. 976 - 981
Main Authors Shethia, Shreyansh, Gupta, Akshita, Thapliyal, Omanshu, Hwang, Inseok
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.10.2021
Subjects
Online AccessGet full text
ISSN2577-1655
DOI10.1109/SMC52423.2021.9658615

Cover

Abstract In this paper, we consider a distributed optimization problem with coupled constraints, where a network of agents aim to cooperatively minimize the sum of their local objective functions, subject to individual constraints. The primary goal is to improve the convergence rate of the existing Tracking Alternating Direction Method of Multipliers (TADMM) algorithm to solve the above distributed optimization problem. To this end, an upper bound on the convergence rate factor of the TADMM algorithm is derived in terms of the weight matrix of the network. To achieve faster convergence, the optimal weight matrix is computed using a semi-definite programming (SDP) formulation. Lastly, we implement the optimization problem in a Distributed Model-Predictive Control problem for a group of aircraft in formation flight and solve it using both Fast-Tracking ADMM (F-TADMM) and TADMM to demonstrate faster convergence of the proposed algorithm.
AbstractList In this paper, we consider a distributed optimization problem with coupled constraints, where a network of agents aim to cooperatively minimize the sum of their local objective functions, subject to individual constraints. The primary goal is to improve the convergence rate of the existing Tracking Alternating Direction Method of Multipliers (TADMM) algorithm to solve the above distributed optimization problem. To this end, an upper bound on the convergence rate factor of the TADMM algorithm is derived in terms of the weight matrix of the network. To achieve faster convergence, the optimal weight matrix is computed using a semi-definite programming (SDP) formulation. Lastly, we implement the optimization problem in a Distributed Model-Predictive Control problem for a group of aircraft in formation flight and solve it using both Fast-Tracking ADMM (F-TADMM) and TADMM to demonstrate faster convergence of the proposed algorithm.
Author Thapliyal, Omanshu
Shethia, Shreyansh
Gupta, Akshita
Hwang, Inseok
Author_xml – sequence: 1
  givenname: Shreyansh
  surname: Shethia
  fullname: Shethia, Shreyansh
  email: sshethia@purdue.edu
  organization: Purdue University,Aeronautics and Astronautics,West Lafayette,IN,USA
– sequence: 2
  givenname: Akshita
  surname: Gupta
  fullname: Gupta, Akshita
  email: gupta417@purdue.edu
  organization: Purdue University,Aeronautics and Astronautics,West Lafayette,IN,USA
– sequence: 3
  givenname: Omanshu
  surname: Thapliyal
  fullname: Thapliyal, Omanshu
  email: othapliy@purdue.edu
  organization: Purdue University,Aeronautics and Astronautics,West Lafayette,IN,USA
– sequence: 4
  givenname: Inseok
  surname: Hwang
  fullname: Hwang, Inseok
  email: ihwang@purdue.edu
  organization: Purdue University,Aeronautics and Astronautics,West Lafayette,IN,USA
BookMark eNotUM1OwzAYCwgktrEnQEg5wqEjP02THKeWAdKqSTDOU5p-2QJdO6UZiLeniF1sX2zZHqOLtmsBoVtKZpQS_fBW5oKljM8YYXSmM6EyKs7QVEtFs0ykKSNSnqMRE1ImNBPiCo37_oMQRlKqRigWvo_BV8cINV6YPibrYOynb7d43kQIrYl_uvABbPRdi0uIu67GncPlsYn-0HgIPb6bF2V5P1i2XfBxt8ffA-LVIfq9aXDetV8QttBawK8mwjW6dKbpYXriCXpfPK7z52S5enrJ58vEU6piknHDiIKa16AtMdZQ54yiNqsYsw4ErwyF4QWihq3MkVpwpyvORKWVllryCbr5z_UAsDmEoUz42ZxO4r96yV7X
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC52423.2021.9658615
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 9781665442077
1665442077
EISSN 2577-1655
EndPage 981
ExternalDocumentID 9658615
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i118t-63a208ed3de9c0aca1ffa81c6b22cfe53ba1e110088162f0d53f9b325b9897973
IEDL.DBID RIE
IngestDate Wed Aug 27 03:03:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-63a208ed3de9c0aca1ffa81c6b22cfe53ba1e110088162f0d53f9b325b9897973
PageCount 6
ParticipantIDs ieee_primary_9658615
PublicationCentury 2000
PublicationDate 2021-Oct.-17
PublicationDateYYYYMMDD 2021-10-17
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-17
  day: 17
PublicationDecade 2020
PublicationTitle Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev SMC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
Score 2.1626577
Snippet In this paper, we consider a distributed optimization problem with coupled constraints, where a network of agents aim to cooperatively minimize the sum of...
SourceID ieee
SourceType Publisher
StartPage 976
SubjectTerms Convex functions
Network topology
Prediction algorithms
Programming
Real-time systems
Trajectory
Upper bound
Title Distributed Fast-Tracking Alternating Direction Method of Multipliers (ADMM) Algorithm with Optimal Convergence Rate
URI https://ieeexplore.ieee.org/document/9658615
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA5zJ73oHuKbHDxsYLsmafo4js0xhKqog91Gmvyqw62Vrbv415u0dT7w4C0UQkuS_l75fd-H0CWVFIRgwoopBcsNCLGENoKWIMxcEwkRFzzd0a03nrg3Uz6toastFgYAiuYzsM2wuMtXmdyYUlnPEJV4BlG-4wdeidXaJleOS4IKoUOcsPcYDbgJFXQGSIldTfyhoFI4kNE-ij5fXfaNvNqbPLbl-y9Wxv9-2wFqf0H18P3WCTVQDdIm2vvGMthEjer_XeNORTLdbaF8aBhzjdgVKDwS69zSXkuaujnuL6oioR5XFjFLcVRITeMswVHZg2g0tHGnP4yirp7ynK3m-csSm7ouvtN2aCkWeGBa2gt0J-AHHdS20WR0_TQYW5UCgzXXiUdueUxQJwDFFITSEVKQJBEBkZ7eWZkAZ7EgYEjngoB4NHEUZ0kYM8rjMAj90GeHqJ5mKRwh7CmlQ0mhGHPA1UmpjnscSDjxOAPOlThGLbOos7eSZGNWrefJ349P0a7ZWONEiH-G6vlqA-c6Osjji-JYfADUerqP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHtSL8mH8tgcPkDhY23VsRwISVIZGIeFGuvWdEmEzMC7-ettt4kc8eGuWNFva7v3q-zwPQpc0oCAEE4ZPKRiWQ4ghlBE0BGH6mkgIP-Xp9oZ2f2zdTvikgK42WBgASJvPoKGH6V2-jIO1LpU1NVGJrRHlW9yyLJ6htTbplWkRJ8foENNtPnkdroMFlQNS0sin_tBQSV1Ibw95ny_POkdeG-vEbwTvv3gZ__t1-6j6BdbDDxs3VEIFiMpo9xvPYBmV8j94hWs5zXS9gpKu5szVclcgcU-sEkP5rUBXznF7npcJ1Ti3iXGEvVRsGsch9rIuRK2ijWvtrufV1ZTneDlLXhZYV3bxvbJECzHHHd3UnuI7AT-qsLaKxr3rUadv5BoMxkylHolhM0FNByST4AamCAQJQ-GQwFZ7G4TAmS8IaNo5xyE2DU3JWej6jHLfddyW22IHqBjFERwibEupgkkhGTPBUmmpinxMCDmxOQPOpThCFb2o07eMZmOar-fx348v0HZ_5A2mg5vh3Qna0ZusXQppnaJislzDmYoVEv88PSIfxCS93A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Distributed+Fast-Tracking+Alternating+Direction+Method+of+Multipliers+%28ADMM%29+Algorithm+with+Optimal+Convergence+Rate&rft.au=Shethia%2C+Shreyansh&rft.au=Gupta%2C+Akshita&rft.au=Thapliyal%2C+Omanshu&rft.au=Hwang%2C+Inseok&rft.date=2021-10-17&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=976&rft.epage=981&rft_id=info:doi/10.1109%2FSMC52423.2021.9658615&rft.externalDocID=9658615