An Improved Ant Colony Optimization Algorithm Based on Fractional Order Memory for Traveling Salesman Problems

Ant Colony Optimization (ACO) algorithm has a wide array of applications to solve combinatorial optimization problems, especially Traveling Salesman Problems (TSPs). The major limitations of ACO algorithm are premature convergence, the possibility that trapped in the local optima. In this paper, an...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 1516 - 1522
Main Authors Gong, Xiaoling, Rong, Ziheng, Gao, Tao, Pu, Yifei, Wang, Jian
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2019
Subjects
Online AccessGet full text
DOI10.1109/SSCI44817.2019.9003009

Cover

Abstract Ant Colony Optimization (ACO) algorithm has a wide array of applications to solve combinatorial optimization problems, especially Traveling Salesman Problems (TSPs). The major limitations of ACO algorithm are premature convergence, the possibility that trapped in the local optima. In this paper, an improved Ant Colony Optimization algorithm is proposed which uses fractional order difference for pheromone updating and a weighted combined transition probability. The fractional order difference with the characteristic of long-term memory helps the algorithm make full use of the historical information, and the combined transition probability enhances the exploration ability of the algorithm by using the information of a few steps forward. The performance of the proposed algorithm is tested on various data sets from the standard TSP Library compared with the corresponding integer order algorithm and some evolutionary algorithms. According to the empirical results, our algorithm based on fractional order difference overcomes the classic integer order. Furthermore, the results on a number of TSP instances demonstrate that compared with other evolutionary algorithms, the proposed method can obtain the better solutions on most instances with stronger robustness.
AbstractList Ant Colony Optimization (ACO) algorithm has a wide array of applications to solve combinatorial optimization problems, especially Traveling Salesman Problems (TSPs). The major limitations of ACO algorithm are premature convergence, the possibility that trapped in the local optima. In this paper, an improved Ant Colony Optimization algorithm is proposed which uses fractional order difference for pheromone updating and a weighted combined transition probability. The fractional order difference with the characteristic of long-term memory helps the algorithm make full use of the historical information, and the combined transition probability enhances the exploration ability of the algorithm by using the information of a few steps forward. The performance of the proposed algorithm is tested on various data sets from the standard TSP Library compared with the corresponding integer order algorithm and some evolutionary algorithms. According to the empirical results, our algorithm based on fractional order difference overcomes the classic integer order. Furthermore, the results on a number of TSP instances demonstrate that compared with other evolutionary algorithms, the proposed method can obtain the better solutions on most instances with stronger robustness.
Author Rong, Ziheng
Pu, Yifei
Wang, Jian
Gong, Xiaoling
Gao, Tao
Author_xml – sequence: 1
  givenname: Xiaoling
  surname: Gong
  fullname: Gong, Xiaoling
  organization: China University of Petroleum (East China),College of Control Science and Engineering,Qingdao,China
– sequence: 2
  givenname: Ziheng
  surname: Rong
  fullname: Rong, Ziheng
  organization: China University of Petroleum (East China),College of Science,Qingdao,China
– sequence: 3
  givenname: Tao
  surname: Gao
  fullname: Gao, Tao
  organization: China University of Petroleum (East China),College of Control Science and Engineering,Qingdao,China
– sequence: 4
  givenname: Yifei
  surname: Pu
  fullname: Pu, Yifei
  organization: Sichuan University,College of Computer Science,Chengdu,China
– sequence: 5
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: China University of Petroleum (East China),College of Science,Qingdao,China
BookMark eNotUF9LwzAcjKAPOvcJBMkX2PylSdvksRang0mFzefxa5vMQP6MtAzmp7eycQ8Hd8fB3QO5DTFoQp4ZLBkD9bLd1mshJCuXGTC1VAAcQN2QuSonMZMsEzKX9yRUga79McWT7mkVRlpHF8OZNsfRevuLo42BVu4Qkx1_PH3FYcpN0iph9--ho03qdaKf2sd0piYmukt40s6GA92i04PHQL9SbJ32wyO5M-gGPb_yjHyv3nb1x2LTvK_rarOwjMlxkbcdGgU8L2VRAEJmlOwVGFEykXHEQoqWm9Z0osVuAte94ALLHGCaxwo-I0-XXqu13h-T9ZjO--sL_A-JlFhS
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI44817.2019.9003009
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728124858
1728124859
EndPage 1522
ExternalDocumentID 9003009
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-5bcaf903578660a02f98d90f471423aa684b3fbfc4bacaca3ed434a7500781163
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:31 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-5bcaf903578660a02f98d90f471423aa684b3fbfc4bacaca3ed434a7500781163
PageCount 7
ParticipantIDs ieee_primary_9003009
PublicationCentury 2000
PublicationDate 2019-Dec.
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationTitle 2019 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7234453
Snippet Ant Colony Optimization (ACO) algorithm has a wide array of applications to solve combinatorial optimization problems, especially Traveling Salesman Problems...
SourceID ieee
SourceType Publisher
StartPage 1516
SubjectTerms Ant colony optimization
Fractional calculus
fractional order difference
Heuristic algorithms
long-term memory
Optimization
Signal processing algorithms
Traveling salesman problems
Urban areas
Title An Improved Ant Colony Optimization Algorithm Based on Fractional Order Memory for Traveling Salesman Problems
URI https://ieeexplore.ieee.org/document/9003009
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2Qkyc1YPydHjy6UVi3tUckEjRBTICEG-lPJUIhMA7419tvmxiNB9PL0ixp0yZ9X7--9z6EblXMeItZERBF4Zkx0gHjKQ-ENJIJGwuaa2H6z0lvTJ8m8aSC7vZaGGNMTj4zIXzmb_l6qbaQKmtA1i1X6x2kLCm0WqXot0l4YzjsPPrLRjMFwhYPy59_VE3JQaN7hPpfwxVckfdwm8lQffxyYvzvfI5R_Vueh1_2wHOCKsbVkGs7XGQIjMZtl-GOP9bcDg_8mbAoxZa4PX9drmfZ2wLfe_TS2Hd114W0QczxAGw4cR-4tzvsg1k8gtpEoFfHQ48jm4VwMC4UoNnU0bj7MOr0grKYQjDzd4gsiKUSlhMwt0kSIkjLcqY5sR6cfEQlRMKojKy0ikqhfIuMphEVPqAAOyAftZ2iqls6c4YwE1FTyzSx4DanlBGtSHGqqU4Tyoi156gGazVdFX4Z03KZLv7uvkSHsF8FReQKVbP11lx7oM_kTb7Dn9vYq2M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0IHvSkBoy_7cGjG4N1W3tEIgFlYAIk3Eh_KhGGgXHAv95-28RoPJhelmZJmzbp-_r1vfchdCsDyhrUcMeTBJ4ZfeVQFjGHCy0oNwEnmRYm7oedMXmcBJMSuttpYbTWGflMu_CZveWrpdxAqqwGWbdMrbcXEEKCXK1VyH7rHqsNh62uvW7UI6BsMbf4_UfdlAw22oco_howZ4u8uZtUuPLjlxfjf2d0hKrfAj38vIOeY1TSSQUlzQTnOQKtcDNJccsebMkWD-ypsCjklrg5f1muZunrAt9b_FLYdrVXubiBz_EAjDhxDOzbLbbhLB5BdSJQrOOhRZL1gicwLpSgWVfRuP0wanWcopyCM7O3iNQJhOSGeWBvE4Ye9xqGUcU8Y-HJxlSch5QI3wgjieDSNl8r4hNuQwowBLJx2wkqJ8tEnyJMuV9XIgoN-M1JqXnDl4wooqKQUM-YM1SBtZq-544Z02KZzv_uvkH7nVHcm_a6_acLdAB7lxNGLlE5XW30lYX9VFxnu_0JAROusA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=An+Improved+Ant+Colony+Optimization+Algorithm+Based+on+Fractional+Order+Memory+for+Traveling+Salesman+Problems&rft.au=Gong%2C+Xiaoling&rft.au=Rong%2C+Ziheng&rft.au=Gao%2C+Tao&rft.au=Pu%2C+Yifei&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=1516&rft.epage=1522&rft_id=info:doi/10.1109%2FSSCI44817.2019.9003009&rft.externalDocID=9003009