Lenstra Lenstra Lovász (LLL) Assisted Likelihood Ascent Search (LAS) Algorithm for Signal Detection in Massive MIMO

In this paper, we propose a new algorithm called Lenstra Lenstra Lovász (LLL) assisted Likelihood Ascent Search (LAS) algorithm for signal detection in Massive MIMO which attains a near to optimum performance. This algorithm is developed by collaborating two existing algorithms to satisfy the tradeo...

Full description

Saved in:
Bibliographic Details
Published in2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN) pp. 1 - 4
Main Authors Menon, U. Vivek, Challa, Naga Raju, Bagadi, Kalapraveen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2019
Subjects
Online AccessGet full text
DOI10.1109/ViTECoN.2019.8899594

Cover

Abstract In this paper, we propose a new algorithm called Lenstra Lenstra Lovász (LLL) assisted Likelihood Ascent Search (LAS) algorithm for signal detection in Massive MIMO which attains a near to optimum performance. This algorithm is developed by collaborating two existing algorithms to satisfy the tradeoff between performance and complexity in Massive Multiple Input Multiple Output (MIMO) systems. The Linear Detection and Lattice Reduction (LR) are some of the prominent suboptimal algorithms whose performance is far from optimal. In the proposed LLL-LAS Algorithm, the LLL algorithm is an LR based detection which serves as the initial solution to the LAS algorithm. The Simulation results substantiate the decrement in the Bit Error Rate which makes it better than the other classical detection techniques
AbstractList In this paper, we propose a new algorithm called Lenstra Lenstra Lovász (LLL) assisted Likelihood Ascent Search (LAS) algorithm for signal detection in Massive MIMO which attains a near to optimum performance. This algorithm is developed by collaborating two existing algorithms to satisfy the tradeoff between performance and complexity in Massive Multiple Input Multiple Output (MIMO) systems. The Linear Detection and Lattice Reduction (LR) are some of the prominent suboptimal algorithms whose performance is far from optimal. In the proposed LLL-LAS Algorithm, the LLL algorithm is an LR based detection which serves as the initial solution to the LAS algorithm. The Simulation results substantiate the decrement in the Bit Error Rate which makes it better than the other classical detection techniques
Author Challa, Naga Raju
Bagadi, Kalapraveen
Menon, U. Vivek
Author_xml – sequence: 1
  givenname: U. Vivek
  surname: Menon
  fullname: Menon, U. Vivek
  email: vivekmenon.u2017@vitstudent.ac.in
  organization: Vellore Institute of Technology,School of Electronics Engineering (SENSE) Dept,Vellore,India
– sequence: 2
  givenname: Naga Raju
  surname: Challa
  fullname: Challa, Naga Raju
  email: nagaraju.challa@vit.ac.in
  organization: Vellore Institute of Technology,School of Electronics Engineering (SENSE) Dept,Vellore,India
– sequence: 3
  givenname: Kalapraveen
  surname: Bagadi
  fullname: Bagadi, Kalapraveen
  email: bkpraveen@vit.ac.in
  organization: Vellore Institute of Technology,School of Electronics Engineering (SENSE) Dept,Vellore,India
BookMark eNo9kLFOwzAURY0EAy18AQweYUjIi-MkHqPQQiWHDimsleu8NBapjRKrEvwN38KPEYmK6UhXR2e4M3JunUVCbiEKASLx8GY2i9K9hHEEIsxzIbhIzsgMOMtTwThLLomXaEc_KPpPd_z5Hr_onZTynhbjaEaPDZXmHXvTOddMm0braY1q0N3kFfXk9Xs3GN8daOsGWpu9VT19RI_aG2epsbRSU-qItFpV6yty0ap-xOsT5-R1udiUz4FcP63KQgYGIPcBV4nIRAqMa91EoEFkMU8S5FxwaFi0ixVDiBLMWKaRxbzVWdqInULVIuQZm5Obv65BxO3HYA5q-NyejmC_R_xYYA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ViTECoN.2019.8899594
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore (NTUSG)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538693534
9781538693537
EndPage 4
ExternalDocumentID 8899594
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-5a49796135ccd01c1972544e55951d30b2a3e104e737ce325fc76d9baeafe1873
IEDL.DBID RIE
IngestDate Wed Sep 03 07:09:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-5a49796135ccd01c1972544e55951d30b2a3e104e737ce325fc76d9baeafe1873
PageCount 4
ParticipantIDs ieee_primary_8899594
PublicationCentury 2000
PublicationDate 2019-March
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-March
PublicationDecade 2010
PublicationTitle 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN)
PublicationTitleAbbrev ViTECoN
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.729008
Snippet In this paper, we propose a new algorithm called Lenstra Lenstra Lovász (LLL) assisted Likelihood Ascent Search (LAS) algorithm for signal detection in Massive...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Antennas
Bit error rate
Classification algorithms
Complexity theory
Detectors
LAS Algorithm
LLL Algorithm
Massive MIMO
MMSE
Title Lenstra Lenstra Lovász (LLL) Assisted Likelihood Ascent Search (LAS) Algorithm for Signal Detection in Massive MIMO
URI https://ieeexplore.ieee.org/document/8899594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ09qwPjOHjxoYoE-to-jQQiaFk0Aw43sbmexAVuDxQP_xt_iH3O2RYzGg6c2m0na7LeZb6b9ZoaQc2SM2AFlGSY6SMMR3DIC1wJDSlBIYBjiF43no77bGzl3YzaukKtNLQwAFOIzaOjb4l9-nMml_lTW9H3dHcvZIlue75a1WutqOLMVNB-TYaed9bVcS-NfmP6YmVJQRneHRF8PK5Uis8YyFw25-tWH8b9vs0vq38V59GFDO3ukAmmN5CHoVrCcbq7Z28f764pehGF4SREEDWdMw2QG80S3MsY1Lcykpd4Y7a4HaDefZoskf3qmGMvSQTLFY0ZvIC_0WilNUhphsI0Okka30X2djLqdYbtnrAcqGAnmEbnBuBN4ARI4kzJumVKPHGOOA5hVMDO2W8LiNmB-Bp7tSbAtpqTnxoHgwBWYvmfvk2qapXBAqKnQFbRMwW2EVAWSB4JZXLg-MMWcWB2Smt6xyUvZM2Oy3qyjv5ePybZGrdR2nZBqvljCKZJ9Ls4KlD8BaKKsNw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSkBozf7sGDJhZou9uPo0EMaIsmgOFGttspNmBrsHjg3_hb_GPOtojRePDUZjNJm53NvJn2zRtCzhAxQgaRoekYIDUWCENzLQM0KSFCAMMUPxee97tWe8Buh3xYIperXhgAyMlnUFO3-b_8MJVz9ams7jhKHYutkXXOGONFt9ayH05vuPXHuN9qpl1F2FInIDf-MTUlB42bLeJ_Pa7gikxq8yyoycUvJcb_vs82qX6359GHFfDskBIkFZJ5oMRgBV1d07eP99cFPfc874KiG5RDQ-rFE5jGSswY1xQ1kxaMY7S76qHddJzO4uzpmWI2S3vxGA8avYYsZ2wlNE6oj-k2hkjqd_z7KhnctPrNtrYcqaDFWElkGhfMtV2EcC5l2NClGjqGewlYV3A9NBuBIUzACg1s05ZgGjySthW6gQARge7Y5i4pJ2kCe4TqEQaDhh4IE50auVK4ATdEYDnAI87CaJ9U1I6NXgrVjNFysw7-Xj4lG-2-7428TvfukGwqDxZMryNSzmZzOEboz4KT3OOfmJavhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+International+Conference+on+Vision+Towards+Emerging+Trends+in+Communication+and+Networking+%28ViTECoN%29&rft.atitle=Lenstra+Lenstra+Lov%C3%A1sz+%28LLL%29+Assisted+Likelihood+Ascent+Search+%28LAS%29+Algorithm+for+Signal+Detection+in+Massive+MIMO&rft.au=Menon%2C+U.+Vivek&rft.au=Challa%2C+Naga+Raju&rft.au=Bagadi%2C+Kalapraveen&rft.date=2019-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FViTECoN.2019.8899594&rft.externalDocID=8899594