Concurrent Convolutional Neural Networks with Decision Fusion to Diagnose COVID-19 using Chest X-ray Imagery
This paper presents a new deep learning classifier model based on the ensemble of two concurrent Convolutional Neural Networks (CNNs). The CNN modules have identical architectures according to Visual Geometry Group Network (VGG-Net) pattern, but they are intentionally trained with asymmetric volumes...
Saved in:
Published in | 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) pp. 1 - 4 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ECAI52376.2021.9515174 |
Cover
Abstract | This paper presents a new deep learning classifier model based on the ensemble of two concurrent Convolutional Neural Networks (CNNs). The CNN modules have identical architectures according to Visual Geometry Group Network (VGG-Net) pattern, but they are intentionally trained with asymmetric volumes of training samples. The system uses a decision fusion to increase the classification accuracy. We have applied the proposed decision fusion classifier to COVID-19 diagnosis using chest X-ray imagery. For experiments, we have chosen a balanced dataset containing 5674 training chest X-ray images (2837 belonging to subjects with COVID-19, and the other 2837 corresponding to subjects non COVID-19). We have obtained a maximum accuracy of 95.43% on the test set using decision fusion. |
---|---|
AbstractList | This paper presents a new deep learning classifier model based on the ensemble of two concurrent Convolutional Neural Networks (CNNs). The CNN modules have identical architectures according to Visual Geometry Group Network (VGG-Net) pattern, but they are intentionally trained with asymmetric volumes of training samples. The system uses a decision fusion to increase the classification accuracy. We have applied the proposed decision fusion classifier to COVID-19 diagnosis using chest X-ray imagery. For experiments, we have chosen a balanced dataset containing 5674 training chest X-ray images (2837 belonging to subjects with COVID-19, and the other 2837 corresponding to subjects non COVID-19). We have obtained a maximum accuracy of 95.43% on the test set using decision fusion. |
Author | Neagoe, Victor-Emil Ghenea, Gabriela-Loredana |
Author_xml | – sequence: 1 givenname: Gabriela-Loredana surname: Ghenea fullname: Ghenea, Gabriela-Loredana email: loredana.ghenea96@gmail.com organization: "Politehnica" University of Bucharest,Faculty of Electronics, Telecommunications and Information Technology,Bucharest,Romania – sequence: 2 givenname: Victor-Emil surname: Neagoe fullname: Neagoe, Victor-Emil email: victoremil@gmail.com organization: "Politehnica" University of Bucharest,Faculty of Electronics, Telecommunications and Information Technology,Bucharest,Romania |
BookMark | eNotz9FqgzAYBeAMtou12xMMRl5Alz8ajZdF21Uo600ZuytRf22YTUaMK779pOvVd-DAgbMg98YaJOQVWAjAsrd1vioFj9Ik5IxDmAkQkMZ3ZAFJImIuopg_kj63ph6dQ-PpHH9tP3ptjerpB47uir9Y9z3Qi_YnWmCth7mnm_GKt7TQqjN2QJrvP8sigIzOlelofsLB06_AqYmWZ9Whm57IQ6v6AZ9vLslhsz7k22C3fy_z1S7QANIHQrFatVXFmlrFWaOwaQAgURWXQtWxnKnalmHVQIoRl6yNGfCMSZakFcpoSV7-ZzUiHn-cPis3HW__oz-dGVaX |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ECAI52376.2021.9515174 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665425342 9781665425346 |
EndPage | 4 |
ExternalDocumentID | 9515174 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-5a0cafbb0dca49daedd1116ab285ac48285bff0ebd17e3280f4012908067be83 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:44 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-5a0cafbb0dca49daedd1116ab285ac48285bff0ebd17e3280f4012908067be83 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9515174 |
PublicationCentury | 2000 |
PublicationDate | 2021-July-1 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-July-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) |
PublicationTitleAbbrev | ECAI |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7886338 |
Snippet | This paper presents a new deep learning classifier model based on the ensemble of two concurrent Convolutional Neural Networks (CNNs). The CNN modules have... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | chest X-ray imagery Computer architecture Computers concurrent convolutional neural networks (CCNNs) COVID-19 COVID-19 diagnosis decision fusion Deep learning Geometry Training Visualization |
Title | Concurrent Convolutional Neural Networks with Decision Fusion to Diagnose COVID-19 using Chest X-ray Imagery |
URI | https://ieeexplore.ieee.org/document/9515174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDDiNE7jJhlR2qpFKjAU1K2ynTNClAaVBKn8es5OKAIxMNlKIiXyWX53l3fvCLnAfcC1CYDxUGmG_j_gORigQRC8tfGVUq5bw_SmP74Pr-di3iCX21oYAHDkM_Ds1P3Lz3Jd2lRZF70BK6zcJM0oSqparbrol_tJd5heTYQleWDUF3CvfvhH1xQHGqNdMv16XcUVefbKQnn645cS43-_Z490vsvz6N0WePZJA1ZtssSbuhJbojh9r7eUXFKrv-EGR_h-ozb1Sgd1bx06Kt1Q5HRQse6AprcPkwHjCbWk-Eea2pZadM7WckMnL1bzYtMhs9Fwlo5Z3UqBPWEEUTAhfS2NUn6mZZhkErIMD7m-VEEspA6tjJ0yxgeV8Qh6Qeyb0GWoYgQzBXHvgLRW-QoOCY0CE2ohIp4AhpYqVLHmibHCduiLSCGOSNsu1OK1EstY1Gt0_PflE7JjjVXxX09Jq1iXcIYoX6hzZ95PxxOpUA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zve_DoxjpWth3NgIACekDDjbTdqzEiGNxM8K_3tZsYjQdPbbamW_qavo_-3u8RcoH7gCntg8MCqRy0_wHPQR8FgspbaU9Kaas1DEet3n1wPeGTCrlc58IAgAWfgWu69i4_XajchMoaaA0YYuUNsslx1rDI1irTfpkXNzrJVZ8bmAf6fT5zy-E_6qZYtdHdIcOvDxZokWc3z6SrPn5xMf73j3ZJ_TtBj96tVc8eqcC8Rmb4UhV0SxS77-WmEjNqGDhsYyHfb9QEX2m7rK5Du7ltsgVtF7g7oMntQ7_tsJgaWPwjTUxRLTpxlmJF-y-G9WJVJ-NuZ5z0nLKYgvOEPkTmcOEpoaX0UiWCOBWQpnjMtYT0Iy5UYIjspNYeyJSF0PQjTwc2RhWhOpMQNfdJdb6YwwGhoa8DxXnIYkDnUgYyUizWhtoOrRHB-SGpmYWavhZ0GdNyjY7-fnxOtnrj4WA66I9ujsm2EVyBhj0h1WyZwynq_EyeWVF_AtmLrKE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+13th+International+Conference+on+Electronics%2C+Computers+and+Artificial+Intelligence+%28ECAI%29&rft.atitle=Concurrent+Convolutional+Neural+Networks+with+Decision+Fusion+to+Diagnose+COVID-19+using+Chest+X-ray+Imagery&rft.au=Ghenea%2C+Gabriela-Loredana&rft.au=Neagoe%2C+Victor-Emil&rft.date=2021-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FECAI52376.2021.9515174&rft.externalDocID=9515174 |