Concurrent Convolutional Neural Networks with Decision Fusion to Diagnose COVID-19 using Chest X-ray Imagery

This paper presents a new deep learning classifier model based on the ensemble of two concurrent Convolutional Neural Networks (CNNs). The CNN modules have identical architectures according to Visual Geometry Group Network (VGG-Net) pattern, but they are intentionally trained with asymmetric volumes...

Full description

Saved in:
Bibliographic Details
Published in2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) pp. 1 - 4
Main Authors Ghenea, Gabriela-Loredana, Neagoe, Victor-Emil
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2021
Subjects
Online AccessGet full text
DOI10.1109/ECAI52376.2021.9515174

Cover

Abstract This paper presents a new deep learning classifier model based on the ensemble of two concurrent Convolutional Neural Networks (CNNs). The CNN modules have identical architectures according to Visual Geometry Group Network (VGG-Net) pattern, but they are intentionally trained with asymmetric volumes of training samples. The system uses a decision fusion to increase the classification accuracy. We have applied the proposed decision fusion classifier to COVID-19 diagnosis using chest X-ray imagery. For experiments, we have chosen a balanced dataset containing 5674 training chest X-ray images (2837 belonging to subjects with COVID-19, and the other 2837 corresponding to subjects non COVID-19). We have obtained a maximum accuracy of 95.43% on the test set using decision fusion.
AbstractList This paper presents a new deep learning classifier model based on the ensemble of two concurrent Convolutional Neural Networks (CNNs). The CNN modules have identical architectures according to Visual Geometry Group Network (VGG-Net) pattern, but they are intentionally trained with asymmetric volumes of training samples. The system uses a decision fusion to increase the classification accuracy. We have applied the proposed decision fusion classifier to COVID-19 diagnosis using chest X-ray imagery. For experiments, we have chosen a balanced dataset containing 5674 training chest X-ray images (2837 belonging to subjects with COVID-19, and the other 2837 corresponding to subjects non COVID-19). We have obtained a maximum accuracy of 95.43% on the test set using decision fusion.
Author Neagoe, Victor-Emil
Ghenea, Gabriela-Loredana
Author_xml – sequence: 1
  givenname: Gabriela-Loredana
  surname: Ghenea
  fullname: Ghenea, Gabriela-Loredana
  email: loredana.ghenea96@gmail.com
  organization: "Politehnica" University of Bucharest,Faculty of Electronics, Telecommunications and Information Technology,Bucharest,Romania
– sequence: 2
  givenname: Victor-Emil
  surname: Neagoe
  fullname: Neagoe, Victor-Emil
  email: victoremil@gmail.com
  organization: "Politehnica" University of Bucharest,Faculty of Electronics, Telecommunications and Information Technology,Bucharest,Romania
BookMark eNotz9FqgzAYBeAMtou12xMMRl5Alz8ajZdF21Uo600ZuytRf22YTUaMK779pOvVd-DAgbMg98YaJOQVWAjAsrd1vioFj9Ik5IxDmAkQkMZ3ZAFJImIuopg_kj63ph6dQ-PpHH9tP3ptjerpB47uir9Y9z3Qi_YnWmCth7mnm_GKt7TQqjN2QJrvP8sigIzOlelofsLB06_AqYmWZ9Whm57IQ6v6AZ9vLslhsz7k22C3fy_z1S7QANIHQrFatVXFmlrFWaOwaQAgURWXQtWxnKnalmHVQIoRl6yNGfCMSZakFcpoSV7-ZzUiHn-cPis3HW__oz-dGVaX
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ECAI52376.2021.9515174
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665425342
9781665425346
EndPage 4
ExternalDocumentID 9515174
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-5a0cafbb0dca49daedd1116ab285ac48285bff0ebd17e3280f4012908067be83
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:44 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-5a0cafbb0dca49daedd1116ab285ac48285bff0ebd17e3280f4012908067be83
PageCount 4
ParticipantIDs ieee_primary_9515174
PublicationCentury 2000
PublicationDate 2021-July-1
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July-1
  day: 01
PublicationDecade 2020
PublicationTitle 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)
PublicationTitleAbbrev ECAI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7886338
Snippet This paper presents a new deep learning classifier model based on the ensemble of two concurrent Convolutional Neural Networks (CNNs). The CNN modules have...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms chest X-ray imagery
Computer architecture
Computers
concurrent convolutional neural networks (CCNNs)
COVID-19
COVID-19 diagnosis
decision fusion
Deep learning
Geometry
Training
Visualization
Title Concurrent Convolutional Neural Networks with Decision Fusion to Diagnose COVID-19 using Chest X-ray Imagery
URI https://ieeexplore.ieee.org/document/9515174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDDiNE7jJhlR2qpFKjAU1K2ynTNClAaVBKn8es5OKAIxMNlKIiXyWX53l3fvCLnAfcC1CYDxUGmG_j_gORigQRC8tfGVUq5bw_SmP74Pr-di3iCX21oYAHDkM_Ds1P3Lz3Jd2lRZF70BK6zcJM0oSqparbrol_tJd5heTYQleWDUF3CvfvhH1xQHGqNdMv16XcUVefbKQnn645cS43-_Z490vsvz6N0WePZJA1ZtssSbuhJbojh9r7eUXFKrv-EGR_h-ozb1Sgd1bx06Kt1Q5HRQse6AprcPkwHjCbWk-Eea2pZadM7WckMnL1bzYtMhs9Fwlo5Z3UqBPWEEUTAhfS2NUn6mZZhkErIMD7m-VEEspA6tjJ0yxgeV8Qh6Qeyb0GWoYgQzBXHvgLRW-QoOCY0CE2ohIp4AhpYqVLHmibHCduiLSCGOSNsu1OK1EstY1Gt0_PflE7JjjVXxX09Jq1iXcIYoX6hzZ95PxxOpUA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zve_DoxjpWth3NgIACekDDjbTdqzEiGNxM8K_3tZsYjQdPbbamW_qavo_-3u8RcoH7gCntg8MCqRy0_wHPQR8FgspbaU9Kaas1DEet3n1wPeGTCrlc58IAgAWfgWu69i4_XajchMoaaA0YYuUNsslx1rDI1irTfpkXNzrJVZ8bmAf6fT5zy-E_6qZYtdHdIcOvDxZokWc3z6SrPn5xMf73j3ZJ_TtBj96tVc8eqcC8Rmb4UhV0SxS77-WmEjNqGDhsYyHfb9QEX2m7rK5Du7ltsgVtF7g7oMntQ7_tsJgaWPwjTUxRLTpxlmJF-y-G9WJVJ-NuZ5z0nLKYgvOEPkTmcOEpoaX0UiWCOBWQpnjMtYT0Iy5UYIjspNYeyJSF0PQjTwc2RhWhOpMQNfdJdb6YwwGhoa8DxXnIYkDnUgYyUizWhtoOrRHB-SGpmYWavhZ0GdNyjY7-fnxOtnrj4WA66I9ujsm2EVyBhj0h1WyZwynq_EyeWVF_AtmLrKE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+13th+International+Conference+on+Electronics%2C+Computers+and+Artificial+Intelligence+%28ECAI%29&rft.atitle=Concurrent+Convolutional+Neural+Networks+with+Decision+Fusion+to+Diagnose+COVID-19+using+Chest+X-ray+Imagery&rft.au=Ghenea%2C+Gabriela-Loredana&rft.au=Neagoe%2C+Victor-Emil&rft.date=2021-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FECAI52376.2021.9515174&rft.externalDocID=9515174