Medical MRI Image Enhancement Based on Curvelet Transform and Fuzzy Algorithm
This paper proposes a medical MRI image enhancement method based on curvelet transform and fuzzy algorithm. First, the MRI image is subjected to curvelet positive transform to obtain the curvelet coefficients at various scales and directions, and then the Monte-Carlo test method is used to estimate...
        Saved in:
      
    
          | Published in | 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) Vol. 9; pp. 202 - 206 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        11.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/ITAIC49862.2020.9339186 | 
Cover
| Abstract | This paper proposes a medical MRI image enhancement method based on curvelet transform and fuzzy algorithm. First, the MRI image is subjected to curvelet positive transform to obtain the curvelet coefficients at various scales and directions, and then the Monte-Carlo test method is used to estimate each scale noise variance, and then apply hard threshold shrinkage processing to the curvelet coefficients. Finally, the Pal-King algorithm with modified membership function is used to perform fuzzy enhancement on the image after inverse curvelet transformation to obtain the final result image. We selected a brain MRI image to test the algorithm, the experimental results show that compared with the other two enhancement algorithms, the algorithm in this paper has higher PSNR and CONTRAST, which can effectively suppress noise, enhance the edges and details of the image, and has better visual effects. | 
    
|---|---|
| AbstractList | This paper proposes a medical MRI image enhancement method based on curvelet transform and fuzzy algorithm. First, the MRI image is subjected to curvelet positive transform to obtain the curvelet coefficients at various scales and directions, and then the Monte-Carlo test method is used to estimate each scale noise variance, and then apply hard threshold shrinkage processing to the curvelet coefficients. Finally, the Pal-King algorithm with modified membership function is used to perform fuzzy enhancement on the image after inverse curvelet transformation to obtain the final result image. We selected a brain MRI image to test the algorithm, the experimental results show that compared with the other two enhancement algorithms, the algorithm in this paper has higher PSNR and CONTRAST, which can effectively suppress noise, enhance the edges and details of the image, and has better visual effects. | 
    
| Author | He, Wen Hu, Qing Min, Xinyi  | 
    
| Author_xml | – sequence: 1 givenname: Qing surname: Hu fullname: Hu, Qing organization: School of Big Health and Intelligent Engineering, Chengdu Medical College,Chengdu,China – sequence: 2 givenname: Xinyi surname: Min fullname: Min, Xinyi organization: School of Big Health and Intelligent Engineering, Chengdu Medical College,Chengdu,China – sequence: 3 givenname: Wen surname: He fullname: He, Wen email: hewen41731@163.com organization: School of Big Health and Intelligent Engineering, Chengdu Medical College,Chengdu,China  | 
    
| BookMark | eNotj8tKw0AYRkfQhdY-gQvnBRLnksxlGUOrgQZB4rr8Zv5pA8lEJqnQPr0Bu_o2h8P5HshtGAMS8sxZyjmzL1VTVGVmjRKpYIKlVkrLjboha6sN18LwXGSZuSd1ja5roaf1Z0WrAQ5IN-EIocUBw0xfYUJHx0DLU_zFHmfaRAiTH-NAITi6PV0uZ1r0hzF283F4JHce-gnX112Rr-2mKd-T3cdbVRa7pOPczEkuPWoDWmllGWqdQwuZcXopd9rrJVV5mxsGWjqF1i7ktxDoIHPeSKvlijz9eztE3P_EboB43l9Pyj_lSEuN | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ITAIC49862.2020.9339186 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781728152448 1728152445  | 
    
| EndPage | 206 | 
    
| ExternalDocumentID | 9339186 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i118t-53fe78a767690e775aca48d7109d7f73916f9580a73d6e99a76b22eda4df83973 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 05:53:20 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i118t-53fe78a767690e775aca48d7109d7f73916f9580a73d6e99a76b22eda4df83973 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_9339186 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-Dec.-11 | 
    
| PublicationDateYYYYMMDD | 2020-12-11 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-Dec.-11 day: 11  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) | 
    
| PublicationTitleAbbrev | ITAIC | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.7456203 | 
    
| Snippet | This paper proposes a medical MRI image enhancement method based on curvelet transform and fuzzy algorithm. First, the MRI image is subjected to curvelet... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 202 | 
    
| SubjectTerms | Biomedical imaging curvelet transform enhancement fuzzy algorithm Image edge detection Image enhancement Magnetic resonance imaging Monte Carlo methods MRI image Transforms Visual effects  | 
    
| Title | Medical MRI Image Enhancement Based on Curvelet Transform and Fuzzy Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/9339186 | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0XZMlTXKcY2MVKiIb7DaSJnVD10ppD-6vN-m6ieLBWyihKe_RfO8l3_ceAHdSUlfyGXmJjcU9ooLE_lKEexabMFKBTAR24uT4KZzOyeOCLlrg_qCFMcbU5DPju2F9l6_zpHJHZX2bfAvEwzZoMx7utFoNZQsFoh_NhtGICBui27QPB34z-0fblBo1Jscg3q-3I4u8-VWp_GT7qxTjfz_oBPS-9Xnw-YA8p6Blsi6ImzsXGL9EMNrYfQKOs5VzqnsJfLBwpWGewVFVuGYTJZztY1YoMw0n1Xb7CYfvr3mxLlebHphPxrPR1GuaJXhrmyOUHh2khnHJHGU1MIxR6eqVa0e11CxlTl-bCsoDyQY6NELYmQpjoyXRqQ2S2OAMdLI8M-cAcpRgmmKuqUGESqE0V4RIJA2jKsH8AnSdKZYfu3oYy8YKl38_vgJHzh2OAoLQNeiURWVuLJCX6rb24Bf3m56C | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjXW0tD0igTBlxJiRcCPt2glRNkO2g_z1tmNgNB68NUuzLu9l_d5rv-89AO6EILbkM3JiE4s7WHqx-aUwcww2-Uh6Iua-FSeH485wgh-nZFoD9zstjNa6JJ9p1w7Lu3yVxYU9KmuZ5Jsj1tkD-wRjTDZqrYq0hTzeCqJu0MPcBOkm8fM9t5r_o3FKiRuDIxBuV9zQRd7cIpduvP5VjPG_n3QMmt8KPfi8w54TUNNpA4TVrQsMXwIYLM1OAfvp3LrVvgQ-GMBSMEthr1jZdhM5jLZRKxSpgoNivf6E3ffXbLXI58smmAz6UW_oVO0SnIXJEnKHtBNNmaCWtOppSomwFcuVJVsqmlCrsE04YZ6gbdXRnJuZ0ve1ElglJkyi7VNQT7NUnwHIUOyTxGeKaISJ4FIxibFAQlMiY5-dg4Y1xexjUxFjVlnh4u_Ht-BgGIWj2SgYP12CQ-saSwhB6ArU81Whrw2s5_Km9OYXda-hzw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+9th+Joint+International+Information+Technology+and+Artificial+Intelligence+Conference+%28ITAIC%29&rft.atitle=Medical+MRI+Image+Enhancement+Based+on+Curvelet+Transform+and+Fuzzy+Algorithm&rft.au=Hu%2C+Qing&rft.au=Min%2C+Xinyi&rft.au=He%2C+Wen&rft.date=2020-12-11&rft.pub=IEEE&rft.volume=9&rft.spage=202&rft.epage=206&rft_id=info:doi/10.1109%2FITAIC49862.2020.9339186&rft.externalDocID=9339186 |