A Machine Learning-based robust approach to identify Dementia progression employing Dimensionality Reduction in Cross-Sectional MRI data

Timely uncovering of various dementia stages is vital in formulating effective treatment strategies for Alzheimer disease. The high-resolution MRI can be progressively exploited in the classification of various stages of dementia that in turn help in the development of efficient therapeutic stratage...

Full description

Saved in:
Bibliographic Details
Published in2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH) pp. 237 - 242
Main Authors Khan, Afreen, Zubair, Swaleha
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2020
Subjects
Online AccessGet full text
DOI10.1109/SMART-TECH49988.2020.00060

Cover

Abstract Timely uncovering of various dementia stages is vital in formulating effective treatment strategies for Alzheimer disease. The high-resolution MRI can be progressively exploited in the classification of various stages of dementia that in turn help in the development of efficient therapeutic stratagems. Considering the fact that analysis of the huge volume of data is a tenacious challenge, we explored the competence of machine learning (ML) based algorithms to identify stages of dementia in inflicted patients. The employed dimensionality reduction approach relied on the cross-sectional dataset of 434 MRI sessions of 416 subjects, aged between 18 to 96 years. A five-step strategy involving Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Neighbourhood Component Analysis (NCA), Factor Analysis (FA), and Fast Independent Component Analysis (FastICA) was developed. Next, numerous supervised machine learning algorithms were explored to classify the input data. The as-developed method attained an overall accuracy of 87 percent, which means a noteworthy improvement over the existing classical ML approach.
AbstractList Timely uncovering of various dementia stages is vital in formulating effective treatment strategies for Alzheimer disease. The high-resolution MRI can be progressively exploited in the classification of various stages of dementia that in turn help in the development of efficient therapeutic stratagems. Considering the fact that analysis of the huge volume of data is a tenacious challenge, we explored the competence of machine learning (ML) based algorithms to identify stages of dementia in inflicted patients. The employed dimensionality reduction approach relied on the cross-sectional dataset of 434 MRI sessions of 416 subjects, aged between 18 to 96 years. A five-step strategy involving Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Neighbourhood Component Analysis (NCA), Factor Analysis (FA), and Fast Independent Component Analysis (FastICA) was developed. Next, numerous supervised machine learning algorithms were explored to classify the input data. The as-developed method attained an overall accuracy of 87 percent, which means a noteworthy improvement over the existing classical ML approach.
Author Zubair, Swaleha
Khan, Afreen
Author_xml – sequence: 1
  givenname: Afreen
  surname: Khan
  fullname: Khan, Afreen
  email: afreen.khan2k13@gmail.com
  organization: Aligarh Muslim University,Department of Computer Science,Aligarh,India
– sequence: 2
  givenname: Swaleha
  surname: Zubair
  fullname: Zubair, Swaleha
  email: swalehazubair@yahoo.com
  organization: Aligarh Muslim University,Department of Computer Science,Aligarh,India
BookMark eNotkLFOwzAYhI0EAwWegMViT_kdx7EzVmmhlVohtWWu3Ph3sZTaUewOeQMemxSY7nTf6YabkFsfPBLywmDKGFSvu81su8_2i3pZVJVS0xxymAJACTdkwmSumCxAFvfke0Y3uvlyHukade-dP2VHHdHQPhwvMVHddX0YGzQF6gz65OxA53i-Ok1HduoxRhc8xXPXhmEcoHM34mumW5cGukVzadK14jyt-xBjtsPfQLd0s11Ro5N-JHdWtxGf_vWBfL4t9vUyW3-8r-rZOnOMqZQJKLGSzEhsuMorxnRpNAgLqBoLZVE2wEFaLjk3gFqU1gowBT-OL0jRCP5Anv92HSIeut6ddT8cqlxxKRT_AYnQYr4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SMART-TECH49988.2020.00060
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728174074
9781728174075
EndPage 242
ExternalDocumentID 9283758
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-506e971d7ec382911a6da05f0e8cf0646c0307f3733d0ea56ff50d43b98875c53
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-506e971d7ec382911a6da05f0e8cf0646c0307f3733d0ea56ff50d43b98875c53
PageCount 6
ParticipantIDs ieee_primary_9283758
PublicationCentury 2000
PublicationDate 2020-Nov.
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.
PublicationDecade 2020
PublicationTitle 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH)
PublicationTitleAbbrev SMART-TECH
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7418505
Snippet Timely uncovering of various dementia stages is vital in formulating effective treatment strategies for Alzheimer disease. The high-resolution MRI can be...
SourceID ieee
SourceType Publisher
StartPage 237
SubjectTerms classification
Dementia
Dimensionality reduction
machine learning
Machine learning algorithms
Magnetic resonance imaging
Principal component analysis
Tuning
Title A Machine Learning-based robust approach to identify Dementia progression employing Dimensionality Reduction in Cross-Sectional MRI data
URI https://ieeexplore.ieee.org/document/9283758
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMeXtidPKq34Zg4e3TbNYzc5Sh9UISJ9QG8luzuRIrRSk4N-Aj-2O5u2injwFhJIwg67M9n8_79h7MaLTR6QdSsPQ8lDFfpcCdQ8yTwTUotj6bo1pI9iNAsf5tG8xm73XhhEdOIzbNOh-5dv1rqkrbJOQqiWKK6zuoxF5dXackS7XtKZpLYE5NNBb2Sr-JhkWz7JtjyiT_7onOISx_CQpbtHVnqRl3ZZqLb--EVj_O87HbHWt0UPnvbJ55jVcNVkn3eQOnEkwpab-swpTRnYrFX5VsCOIA7FGpbOopu_Q9_tEC4zcFqtitMB6DoB2xtAn_j_FbvDVuwwJtYrRROWK-hRjuUTJ-ey1yEd3wNpTltsNhxMeyO-bbXAl_YLo-CRJzCRXSNRB7FvF8BMmMyLcg9jnduqRWhaDPJABoHxMItEnkc2mIGyAy0jHQUnrLFar_CUgdRCKrTTXKIfmtioTIhEdbtKBr7UCs9Yk0Zx8VrRNBbbATz_-_QFO6A4Vu6_S9YoNiVe2TKgUNcu_l9up7Yv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABAsSbGxhxSRM_khG1oPJIhUqR2KrYvqAKqUUlHeAX8LPxOeUhxMAWOVIc3SW-i_M9GDuOUlcmRN0qhdBcGBFzo9DyrIicIItjHdwa8p7q3ourB_mwwE6-uDCIGMBn2KTD8C_fTeyMtspOM5JqkekiW5JCCFmzteZKoq0oO73LfRPIB-ftru_jUwJuxQTcikh_8od3SigdF6ss_5y0Row8NWeVadq3X3qM_72rNbb5TdKD26_ys84WcLzB3s8gD_BIhLly6iOnQuVgOjGzlwo-NcShmsAokHTLV-iEPcJRAQGtVSt1AAYvYH8B6JADQK3e4Xt26JPaK-UTRmNoU5XldwHQ5c9D3r8EQp1usvuL80G7y-dmC3zkvzEqLiOFmW45jTZJY78EFsoVkSwjTG3p-xZlaTkoE50kLsJCqrKUPp2J8YHW0spkizXGkzFuM9BWaYP-RdcYC5c6UyiVmVbL6CTW1uAO26AoDp9rPY3hPIC7fw8fseXuIL8Z3lz2rvfYCuW05gLus0Y1neGBbwoqcxiehQ8gcrl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+First+International+Conference+of+Smart+Systems+and+Emerging+Technologies+%28SMARTTECH%29&rft.atitle=A+Machine+Learning-based+robust+approach+to+identify+Dementia+progression+employing+Dimensionality+Reduction+in+Cross-Sectional+MRI+data&rft.au=Khan%2C+Afreen&rft.au=Zubair%2C+Swaleha&rft.date=2020-11-01&rft.pub=IEEE&rft.spage=237&rft.epage=242&rft_id=info:doi/10.1109%2FSMART-TECH49988.2020.00060&rft.externalDocID=9283758