A Machine Learning-based robust approach to identify Dementia progression employing Dimensionality Reduction in Cross-Sectional MRI data
Timely uncovering of various dementia stages is vital in formulating effective treatment strategies for Alzheimer disease. The high-resolution MRI can be progressively exploited in the classification of various stages of dementia that in turn help in the development of efficient therapeutic stratage...
Saved in:
| Published in | 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH) pp. 237 - 242 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.11.2020
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/SMART-TECH49988.2020.00060 |
Cover
| Abstract | Timely uncovering of various dementia stages is vital in formulating effective treatment strategies for Alzheimer disease. The high-resolution MRI can be progressively exploited in the classification of various stages of dementia that in turn help in the development of efficient therapeutic stratagems. Considering the fact that analysis of the huge volume of data is a tenacious challenge, we explored the competence of machine learning (ML) based algorithms to identify stages of dementia in inflicted patients. The employed dimensionality reduction approach relied on the cross-sectional dataset of 434 MRI sessions of 416 subjects, aged between 18 to 96 years. A five-step strategy involving Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Neighbourhood Component Analysis (NCA), Factor Analysis (FA), and Fast Independent Component Analysis (FastICA) was developed. Next, numerous supervised machine learning algorithms were explored to classify the input data. The as-developed method attained an overall accuracy of 87 percent, which means a noteworthy improvement over the existing classical ML approach. |
|---|---|
| AbstractList | Timely uncovering of various dementia stages is vital in formulating effective treatment strategies for Alzheimer disease. The high-resolution MRI can be progressively exploited in the classification of various stages of dementia that in turn help in the development of efficient therapeutic stratagems. Considering the fact that analysis of the huge volume of data is a tenacious challenge, we explored the competence of machine learning (ML) based algorithms to identify stages of dementia in inflicted patients. The employed dimensionality reduction approach relied on the cross-sectional dataset of 434 MRI sessions of 416 subjects, aged between 18 to 96 years. A five-step strategy involving Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Neighbourhood Component Analysis (NCA), Factor Analysis (FA), and Fast Independent Component Analysis (FastICA) was developed. Next, numerous supervised machine learning algorithms were explored to classify the input data. The as-developed method attained an overall accuracy of 87 percent, which means a noteworthy improvement over the existing classical ML approach. |
| Author | Zubair, Swaleha Khan, Afreen |
| Author_xml | – sequence: 1 givenname: Afreen surname: Khan fullname: Khan, Afreen email: afreen.khan2k13@gmail.com organization: Aligarh Muslim University,Department of Computer Science,Aligarh,India – sequence: 2 givenname: Swaleha surname: Zubair fullname: Zubair, Swaleha email: swalehazubair@yahoo.com organization: Aligarh Muslim University,Department of Computer Science,Aligarh,India |
| BookMark | eNotkLFOwzAYhI0EAwWegMViT_kdx7EzVmmhlVohtWWu3Ph3sZTaUewOeQMemxSY7nTf6YabkFsfPBLywmDKGFSvu81su8_2i3pZVJVS0xxymAJACTdkwmSumCxAFvfke0Y3uvlyHukade-dP2VHHdHQPhwvMVHddX0YGzQF6gz65OxA53i-Ok1HduoxRhc8xXPXhmEcoHM34mumW5cGukVzadK14jyt-xBjtsPfQLd0s11Ro5N-JHdWtxGf_vWBfL4t9vUyW3-8r-rZOnOMqZQJKLGSzEhsuMorxnRpNAgLqBoLZVE2wEFaLjk3gFqU1gowBT-OL0jRCP5Anv92HSIeut6ddT8cqlxxKRT_AYnQYr4 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SMART-TECH49988.2020.00060 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728174074 9781728174075 |
| EndPage | 242 |
| ExternalDocumentID | 9283758 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-506e971d7ec382911a6da05f0e8cf0646c0307f3733d0ea56ff50d43b98875c53 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:33:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-506e971d7ec382911a6da05f0e8cf0646c0307f3733d0ea56ff50d43b98875c53 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9283758 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov. |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov. |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH) |
| PublicationTitleAbbrev | SMART-TECH |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7418505 |
| Snippet | Timely uncovering of various dementia stages is vital in formulating effective treatment strategies for Alzheimer disease. The high-resolution MRI can be... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 237 |
| SubjectTerms | classification Dementia Dimensionality reduction machine learning Machine learning algorithms Magnetic resonance imaging Principal component analysis Tuning |
| Title | A Machine Learning-based robust approach to identify Dementia progression employing Dimensionality Reduction in Cross-Sectional MRI data |
| URI | https://ieeexplore.ieee.org/document/9283758 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMeXtidPKq34Zg4e3TbNYzc5Sh9UISJ9QG8luzuRIrRSk4N-Aj-2O5u2injwFhJIwg67M9n8_79h7MaLTR6QdSsPQ8lDFfpcCdQ8yTwTUotj6bo1pI9iNAsf5tG8xm73XhhEdOIzbNOh-5dv1rqkrbJOQqiWKK6zuoxF5dXackS7XtKZpLYE5NNBb2Sr-JhkWz7JtjyiT_7onOISx_CQpbtHVnqRl3ZZqLb--EVj_O87HbHWt0UPnvbJ55jVcNVkn3eQOnEkwpab-swpTRnYrFX5VsCOIA7FGpbOopu_Q9_tEC4zcFqtitMB6DoB2xtAn_j_FbvDVuwwJtYrRROWK-hRjuUTJ-ey1yEd3wNpTltsNhxMeyO-bbXAl_YLo-CRJzCRXSNRB7FvF8BMmMyLcg9jnduqRWhaDPJABoHxMItEnkc2mIGyAy0jHQUnrLFar_CUgdRCKrTTXKIfmtioTIhEdbtKBr7UCs9Yk0Zx8VrRNBbbATz_-_QFO6A4Vu6_S9YoNiVe2TKgUNcu_l9up7Yv |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABAsSbGxhxSRM_khG1oPJIhUqR2KrYvqAKqUUlHeAX8LPxOeUhxMAWOVIc3SW-i_M9GDuOUlcmRN0qhdBcGBFzo9DyrIicIItjHdwa8p7q3ourB_mwwE6-uDCIGMBn2KTD8C_fTeyMtspOM5JqkekiW5JCCFmzteZKoq0oO73LfRPIB-ftru_jUwJuxQTcikh_8od3SigdF6ss_5y0Row8NWeVadq3X3qM_72rNbb5TdKD26_ys84WcLzB3s8gD_BIhLly6iOnQuVgOjGzlwo-NcShmsAokHTLV-iEPcJRAQGtVSt1AAYvYH8B6JADQK3e4Xt26JPaK-UTRmNoU5XldwHQ5c9D3r8EQp1usvuL80G7y-dmC3zkvzEqLiOFmW45jTZJY78EFsoVkSwjTG3p-xZlaTkoE50kLsJCqrKUPp2J8YHW0spkizXGkzFuM9BWaYP-RdcYC5c6UyiVmVbL6CTW1uAO26AoDp9rPY3hPIC7fw8fseXuIL8Z3lz2rvfYCuW05gLus0Y1neGBbwoqcxiehQ8gcrl8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+First+International+Conference+of+Smart+Systems+and+Emerging+Technologies+%28SMARTTECH%29&rft.atitle=A+Machine+Learning-based+robust+approach+to+identify+Dementia+progression+employing+Dimensionality+Reduction+in+Cross-Sectional+MRI+data&rft.au=Khan%2C+Afreen&rft.au=Zubair%2C+Swaleha&rft.date=2020-11-01&rft.pub=IEEE&rft.spage=237&rft.epage=242&rft_id=info:doi/10.1109%2FSMART-TECH49988.2020.00060&rft.externalDocID=9283758 |