An Automatic Detection Method for Bradykinesia in Parkinson's Disease Based on Inertial Sensor

Parkinson's disease (PD) and Parkinson's syndrome (PS) are common neurodegenerative diseases that occur in the elderly. Bradykinesia is a typical motor symptom of PD and PS.This paper is mainly based on the inertial sensor to collect the upper limb movement signals of Parkinson's dise...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE 3rd International Conference on Electronics Technology (ICET) pp. 166 - 169
Main Authors Juanjuan, He, zhiming, Yao, Jianguo, Wang, Bochen, Li, Xianjun, Yang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2020
Subjects
Online AccessGet full text
DOI10.1109/ICET49382.2020.9119604

Cover

Abstract Parkinson's disease (PD) and Parkinson's syndrome (PS) are common neurodegenerative diseases that occur in the elderly. Bradykinesia is a typical motor symptom of PD and PS.This paper is mainly based on the inertial sensor to collect the upper limb movement signals of Parkinson's disease, extract the corresponding characteristics, and use the neural network multi-layer perceptron (MLP) model to automatically detect the bradykinesia of Parkinson's disease. The experimental results show that the classification accuracy of neural network multi-layer perceptron algorithm for Parkinson's disease and normal subjects is over 90%, and the classification accuracy for normal subjects, Parkinson's disease and Parkinson's syndrome is 85%.This study shows the feasibility of using wearable devices to quantitatively evaluate the motor symptoms of patients with Parkinson's disease and Parkinson's syndrome, and the extracted quantitative indicators and detection methods have certain reference value for future related studies.
AbstractList Parkinson's disease (PD) and Parkinson's syndrome (PS) are common neurodegenerative diseases that occur in the elderly. Bradykinesia is a typical motor symptom of PD and PS.This paper is mainly based on the inertial sensor to collect the upper limb movement signals of Parkinson's disease, extract the corresponding characteristics, and use the neural network multi-layer perceptron (MLP) model to automatically detect the bradykinesia of Parkinson's disease. The experimental results show that the classification accuracy of neural network multi-layer perceptron algorithm for Parkinson's disease and normal subjects is over 90%, and the classification accuracy for normal subjects, Parkinson's disease and Parkinson's syndrome is 85%.This study shows the feasibility of using wearable devices to quantitatively evaluate the motor symptoms of patients with Parkinson's disease and Parkinson's syndrome, and the extracted quantitative indicators and detection methods have certain reference value for future related studies.
Author Juanjuan, He
Jianguo, Wang
Xianjun, Yang
zhiming, Yao
Bochen, Li
Author_xml – sequence: 1
  givenname: He
  surname: Juanjuan
  fullname: Juanjuan, He
  organization: CASHIPS University of Science and Technology of China,Institute of Intelligent Machines,Hefei,China
– sequence: 2
  givenname: Yao
  surname: zhiming
  fullname: zhiming, Yao
  organization: CASHIPS University of Science and Technology of China,Institute of Intelligent Machines,Hefei,China
– sequence: 3
  givenname: Wang
  surname: Jianguo
  fullname: Jianguo, Wang
  organization: Hefei Institute of Physical Science, CAS,Institute of Intelligent Machines,Hefei,China
– sequence: 4
  givenname: Li
  surname: Bochen
  fullname: Bochen, Li
  organization: Hefei Institute of Physical Science, CAS,Institute of Intelligent Machines,Hefei,China
– sequence: 5
  givenname: Yang
  surname: Xianjun
  fullname: Xianjun, Yang
  organization: Hefei Institute of Physical Science, CAS,Institute of Intelligent Machines,Hefei,China
BookMark eNotj01LAzEYhCPowVZ_gSC5edo1X83HcbttdaGiYL1astk3GGyzksRD_70L9jLDwMzAM0OXcYyA0D0lNaXEPHbteicM16xmhJHaUGokERdoRhXTVDLN6TX6bCJufst4tCU4vIICroQx4hcoX-OA_ZjwMtnh9B0i5GBxiPjNpinlMT5kvAoZbAa8nGTA066LkEqwB_wOUyXdoCtvDxluzz5HH5v1rn2utq9PXdtsq0CpLpXojQcJXlPBOHPeC6-cM0ZQbyybGJQg1g1KmIH0oudqsZBOy8Ep5biWis_R3f9vAID9TwpHm077MzL_A1kvUUg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICET49382.2020.9119604
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728162831
9781728162836
EndPage 169
ExternalDocumentID 9119604
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-4b9fe6ef814232cff4f7cc9941f9a2938740acd749d0b4b37556c86dc77c38673
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-4b9fe6ef814232cff4f7cc9941f9a2938740acd749d0b4b37556c86dc77c38673
PageCount 4
ParticipantIDs ieee_primary_9119604
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle 2020 IEEE 3rd International Conference on Electronics Technology (ICET)
PublicationTitleAbbrev ELTECH
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8031918
Snippet Parkinson's disease (PD) and Parkinson's syndrome (PS) are common neurodegenerative diseases that occur in the elderly. Bradykinesia is a typical motor symptom...
SourceID ieee
SourceType Publisher
StartPage 166
SubjectTerms artificial neural network
Conferences
inertial sensor
Inertial sensors
Neural networks
Parkinson's disease
Parkinson's diseases
Performance evaluation
RMS
Senior citizens
UPDRS
Wearable computers
Title An Automatic Detection Method for Bradykinesia in Parkinson's Disease Based on Inertial Sensor
URI https://ieeexplore.ieee.org/document/9119604
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA7bTp5UNvGbHAQvtmtNmjTHuQ82YSK4wU6OfEKZtDLbg_56k7ROFA9eQgltUxLaJ2_f53leAK64sl88anigOVIB5oQFqRYyiKjASCQ8SYQnyD6Q6RLfr5JVC9zstDBaa08-06E79Ll8VcjK_Srr2xfTeYm0QZtSVmu1GtFvHLH-bDheYIZSJ6-6jcLm5B9VUzxoTPbB_Gu4miuyCatShPLjlxPjf5_nAPS-5XnwcQc8h6Cl8y54HuRwUJWFt2CFI116jlUO575ENLR7U-jy5u8bx3PPOMxy6BTPXvx1_QZHdaIG3tlGQXvdLHeMa_4Cn2ygW2x7YDkZL4bToCmeEGQ2ZigDLJjRRJs0dqlYaQw2VErGcGwYtxjvSvFxqShmKhJYIJokRKZESUolSglFR6CTF7k-BtCCujPNQShGxAZIRkiRUBmlUkf2njE_AV03N-vX2h9j3UzL6d_dZ2DPrU9NGjwHnXJb6QsL7KW49Cv6CXixpQw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zHvSksom_zUHwYrvWJE1znPvBptsQ3GAnR5ImMCatzPagf71JWieKBy-hhLYpCe3L1--99wFwxRPzxaOae4qjxMM8Yl6shPQCKjAShBMiHEF2Eg1m-H5O5jVws9HCKKUc-Uz59tDl8pNMFvZXWcu8mNZLZAtsExNV0FKtVcl-w4C1hp3eFDMUW4HVbeBXp_-om-Jgo78Hxl8DlmyRlV_kwpcfv7wY__tE-6D5LdCDjxvoOQA1lTbAczuF7SLPnAkr7KrcsaxSOHZFoqHZnUKbOX9fWab7ksNlCq3m2cm_rt9gt0zVwDvTJNBcN0wt55q_wCcT6mbrJpj1e9POwKvKJ3hLEzXkHhZMq0jpOLTJWKk11lRKxnCoGTcob4vxcZlQzJJAYIEoIZGMo0RSKlEcUXQI6mmWqiMADaxb2xyEQhSZEEkLKQiVQSxVYO4Z8mPQsHOzeC0dMhbVtJz83X0JdgbT8WgxGk4eTsGuXauSQngG6vm6UOcG5nNx4Vb3E1SCqF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+3rd+International+Conference+on+Electronics+Technology+%28ICET%29&rft.atitle=An+Automatic+Detection+Method+for+Bradykinesia+in+Parkinson%27s+Disease+Based+on+Inertial+Sensor&rft.au=Juanjuan%2C+He&rft.au=zhiming%2C+Yao&rft.au=Jianguo%2C+Wang&rft.au=Bochen%2C+Li&rft.date=2020-05-01&rft.pub=IEEE&rft.spage=166&rft.epage=169&rft_id=info:doi/10.1109%2FICET49382.2020.9119604&rft.externalDocID=9119604