Using Hidden Markov Model to Predict the Potential Intent of User's Gaze Behavior
Study between visual gaze behavior and implied intent, it provides a new idea for exploring the human-computer interaction mode of non-verbal communication. Applying hidden Markov model to implicit intention inference of visual gaze, find predictive models for both efficiency and accuracy, reduction...
        Saved in:
      
    
          | Published in | 2021 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE) pp. 38 - 41 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.07.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/MLISE54096.2021.00015 | 
Cover
| Abstract | Study between visual gaze behavior and implied intent, it provides a new idea for exploring the human-computer interaction mode of non-verbal communication. Applying hidden Markov model to implicit intention inference of visual gaze, find predictive models for both efficiency and accuracy, reduction of lag in training models using historical data. The subjects' gaze data were collected, based on the hidden Markov model, two different gaze patterns are constructed, the model parameters are trained by Baum- Welch algorithm, next, the viterbi algorithm is used to solve the maximum probability hidden state sequence, then, the implicit intent prediction of the gaze behavior. On this basis, the architecture of the model and its effectiveness are verified, the relationship between human intention and gaze behavior is further discussed. | 
    
|---|---|
| AbstractList | Study between visual gaze behavior and implied intent, it provides a new idea for exploring the human-computer interaction mode of non-verbal communication. Applying hidden Markov model to implicit intention inference of visual gaze, find predictive models for both efficiency and accuracy, reduction of lag in training models using historical data. The subjects' gaze data were collected, based on the hidden Markov model, two different gaze patterns are constructed, the model parameters are trained by Baum- Welch algorithm, next, the viterbi algorithm is used to solve the maximum probability hidden state sequence, then, the implicit intent prediction of the gaze behavior. On this basis, the architecture of the model and its effectiveness are verified, the relationship between human intention and gaze behavior is further discussed. | 
    
| Author | Guogang Gaozheng Yumin Wushiqian  | 
    
| Author_xml | – sequence: 1 surname: Guogang fullname: Guogang email: 1277835083@qq.com organization: College of Science, Wuhan University of Science and Technology,Wuhan,China – sequence: 2 surname: Gaozheng fullname: Gaozheng email: 87956426@163.com organization: College of Science, Wuhan University of Science and Technology,Wuhan,China – sequence: 3 surname: Wushiqian fullname: Wushiqian email: shiqian.wu@wust.edu.cu organization: Robotics and Intelligent Systems Research Institute, Wuhan University of Science and Technology,Wuhan,China – sequence: 4 surname: Yumin fullname: Yumin email: yufeng3378@163.com organization: Robotics and Intelligent Systems Research Institute, Wuhan University of Science and Technology,Wuhan,China  | 
    
| BookMark | eNotzE1LwzAYwPEIetC5TyBCbp4686R5aY465lZoceJ2Hnl56oK1kTYM9NOL6On_O_2vyPmQBiTkFtgCgJn7tqlfV1IwoxaccVgwxkCekbnRFSglBehSyUvysp_i8EY3MQQcaGvH93SibQrY05zodsQQfab5iHSbMg452p7Ww69o6uh-wvFuomv7jfQRj_YU03hNLjrbTzj_74zsnla75aZontf18qEpIkCVi9ILq4T0YJ3tJGrgFdOOaY_OOK2ZDkEE733JhJFSWO0857zUnQOrDStn5OZvGxHx8DnGDzt-HYwCUIaXP5yjTHk | 
    
| CODEN | IEEPAD | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/MLISE54096.2021.00015 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781665417365 1665417366  | 
    
| EndPage | 41 | 
    
| ExternalDocumentID | 9611692 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i118t-3c4a645c1abaf5e712807b07ceb9b7707dd4dccc3049554a7bc22237fb1a7903 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:37:56 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i118t-3c4a645c1abaf5e712807b07ceb9b7707dd4dccc3049554a7bc22237fb1a7903 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | ieee_primary_9611692 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-July | 
    
| PublicationDateYYYYMMDD | 2021-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-July  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2021 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE) | 
    
| PublicationTitleAbbrev | MLISE | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.7655661 | 
    
| Snippet | Study between visual gaze behavior and implied intent, it provides a new idea for exploring the human-computer interaction mode of non-verbal communication.... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 38 | 
    
| SubjectTerms | component Hidden Markov Model Hidden Markov models Human computer interaction Markov processes Predicted intent Predictive models Training Visual gaze Visualization Viterbi algorithm  | 
    
| Title | Using Hidden Markov Model to Predict the Potential Intent of User's Gaze Behavior | 
    
| URI | https://ieeexplore.ieee.org/document/9611692 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPQheTJptk2z2LC1VjFRsobeyXwGxJFI3Hvz1zmxiRfHgLYRAws4m8ybvvRlCLnHIW2w0C4YmLqBA4SaQSmUBlzKL4H0ywrPn-UM6XcR3y2TZIddbL4y11ovPbIiHnss3la7xV9lApIylAj64OzxLG69Wa8phkRjk97dPYwAgApUHQxZ6m_CPoSk-Z0z2SP51t0Yq8hLWToX641cjxv8-zj7pf7vz6Gybdw5Ix5Y98ui5fzrFjiAlRQdO9U5x0NmaugouRz7GUUB7dFY5VAjJNfXydUergi5gI169UVT-0LZj4qZP5pPx_GYatOMSgmeoElww0rFM40QzqWSRWM6w0Y2KuLZKKM4hDAaiojUSawAiJFcawQEvFJNcRKND0i2r0h4RKjOA3NZYLXURQwWIqMGmAP5sYpiW7Jj0cDVWr01DjFW7ECd_nz4luxiPRuN6RrpuU9tzyOROXfgQfgKBY5_7 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1KPehJpRW_3YPgxaTZdpPtnqUl1aZUbKG3sl8BsSRStx789e5sYkXx4C2EQMLOJvMm770ZhK5hyBvVigRdTXNXoDAdCCn7AROiH7n3SXPPnmeTJJ3T-0W8aKDbrRfGGOPFZyaEQ8_l61Jt4FdZhyeEJNx9cHdiSmlcubVqWw6JeCcbj54GDoJw0B50SeiNwj_GpvisMdxH2df9KrHIS7ixMlQfv1ox_veBDlD725-Hp9vMc4gapmihR8_-4xR6ghQYPDjlO4ZRZytsS3c5MDIWO7yHp6UFjZBYYS9gt7jM8dxtxZs3DNofXPdMXLfRbDiY3aVBPTAheHZ1gg16ioqExooIKfLYMAKtbmTElJFcMuYCoV1clAJqzcEIwaQCeMBySQTjUe8INYuyMMcIi74D3UYbJVROXQ0IuMEkDv6ZWBMlyAlqwWosX6uWGMt6IU7_Pn2FdtNZNl6OR5OHM7QHsakUr-eoadcbc-HyupWXPpyfEoCjSA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Machine+Learning+and+Intelligent+Systems+Engineering+%28MLISE%29&rft.atitle=Using+Hidden+Markov+Model+to+Predict+the+Potential+Intent+of+User%27s+Gaze+Behavior&rft.au=Guogang&rft.au=Gaozheng&rft.au=Wushiqian&rft.au=Yumin&rft.date=2021-07-01&rft.pub=IEEE&rft.spage=38&rft.epage=41&rft_id=info:doi/10.1109%2FMLISE54096.2021.00015&rft.externalDocID=9611692 |