Using Hidden Markov Model to Predict the Potential Intent of User's Gaze Behavior

Study between visual gaze behavior and implied intent, it provides a new idea for exploring the human-computer interaction mode of non-verbal communication. Applying hidden Markov model to implicit intention inference of visual gaze, find predictive models for both efficiency and accuracy, reduction...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE) pp. 38 - 41
Main Authors Guogang, Gaozheng, Wushiqian, Yumin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2021
Subjects
Online AccessGet full text
DOI10.1109/MLISE54096.2021.00015

Cover

Abstract Study between visual gaze behavior and implied intent, it provides a new idea for exploring the human-computer interaction mode of non-verbal communication. Applying hidden Markov model to implicit intention inference of visual gaze, find predictive models for both efficiency and accuracy, reduction of lag in training models using historical data. The subjects' gaze data were collected, based on the hidden Markov model, two different gaze patterns are constructed, the model parameters are trained by Baum- Welch algorithm, next, the viterbi algorithm is used to solve the maximum probability hidden state sequence, then, the implicit intent prediction of the gaze behavior. On this basis, the architecture of the model and its effectiveness are verified, the relationship between human intention and gaze behavior is further discussed.
AbstractList Study between visual gaze behavior and implied intent, it provides a new idea for exploring the human-computer interaction mode of non-verbal communication. Applying hidden Markov model to implicit intention inference of visual gaze, find predictive models for both efficiency and accuracy, reduction of lag in training models using historical data. The subjects' gaze data were collected, based on the hidden Markov model, two different gaze patterns are constructed, the model parameters are trained by Baum- Welch algorithm, next, the viterbi algorithm is used to solve the maximum probability hidden state sequence, then, the implicit intent prediction of the gaze behavior. On this basis, the architecture of the model and its effectiveness are verified, the relationship between human intention and gaze behavior is further discussed.
Author Guogang
Gaozheng
Yumin
Wushiqian
Author_xml – sequence: 1
  surname: Guogang
  fullname: Guogang
  email: 1277835083@qq.com
  organization: College of Science, Wuhan University of Science and Technology,Wuhan,China
– sequence: 2
  surname: Gaozheng
  fullname: Gaozheng
  email: 87956426@163.com
  organization: College of Science, Wuhan University of Science and Technology,Wuhan,China
– sequence: 3
  surname: Wushiqian
  fullname: Wushiqian
  email: shiqian.wu@wust.edu.cu
  organization: Robotics and Intelligent Systems Research Institute, Wuhan University of Science and Technology,Wuhan,China
– sequence: 4
  surname: Yumin
  fullname: Yumin
  email: yufeng3378@163.com
  organization: Robotics and Intelligent Systems Research Institute, Wuhan University of Science and Technology,Wuhan,China
BookMark eNotzE1LwzAYwPEIetC5TyBCbp4686R5aY465lZoceJ2Hnl56oK1kTYM9NOL6On_O_2vyPmQBiTkFtgCgJn7tqlfV1IwoxaccVgwxkCekbnRFSglBehSyUvysp_i8EY3MQQcaGvH93SibQrY05zodsQQfab5iHSbMg452p7Ww69o6uh-wvFuomv7jfQRj_YU03hNLjrbTzj_74zsnla75aZontf18qEpIkCVi9ILq4T0YJ3tJGrgFdOOaY_OOK2ZDkEE733JhJFSWO0857zUnQOrDStn5OZvGxHx8DnGDzt-HYwCUIaXP5yjTHk
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MLISE54096.2021.00015
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665417365
1665417366
EndPage 41
ExternalDocumentID 9611692
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-3c4a645c1abaf5e712807b07ceb9b7707dd4dccc3049554a7bc22237fb1a7903
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:56 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-3c4a645c1abaf5e712807b07ceb9b7707dd4dccc3049554a7bc22237fb1a7903
PageCount 4
ParticipantIDs ieee_primary_9611692
PublicationCentury 2000
PublicationDate 2021-July
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July
PublicationDecade 2020
PublicationTitle 2021 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)
PublicationTitleAbbrev MLISE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7655661
Snippet Study between visual gaze behavior and implied intent, it provides a new idea for exploring the human-computer interaction mode of non-verbal communication....
SourceID ieee
SourceType Publisher
StartPage 38
SubjectTerms component
Hidden Markov Model
Hidden Markov models
Human computer interaction
Markov processes
Predicted intent
Predictive models
Training
Visual gaze
Visualization
Viterbi algorithm
Title Using Hidden Markov Model to Predict the Potential Intent of User's Gaze Behavior
URI https://ieeexplore.ieee.org/document/9611692
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPQheTJptk2z2LC1VjFRsobeyXwGxJFI3Hvz1zmxiRfHgLYRAws4m8ybvvRlCLnHIW2w0C4YmLqBA4SaQSmUBlzKL4H0ywrPn-UM6XcR3y2TZIddbL4y11ovPbIiHnss3la7xV9lApIylAj64OzxLG69Wa8phkRjk97dPYwAgApUHQxZ6m_CPoSk-Z0z2SP51t0Yq8hLWToX641cjxv8-zj7pf7vz6Gybdw5Ix5Y98ui5fzrFjiAlRQdO9U5x0NmaugouRz7GUUB7dFY5VAjJNfXydUergi5gI169UVT-0LZj4qZP5pPx_GYatOMSgmeoElww0rFM40QzqWSRWM6w0Y2KuLZKKM4hDAaiojUSawAiJFcawQEvFJNcRKND0i2r0h4RKjOA3NZYLXURQwWIqMGmAP5sYpiW7Jj0cDVWr01DjFW7ECd_nz4luxiPRuN6RrpuU9tzyOROXfgQfgKBY5_7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1KPehJpRW_3YPgxaTZdpPtnqUl1aZUbKG3sl8BsSRStx789e5sYkXx4C2EQMLOJvMm770ZhK5hyBvVigRdTXNXoDAdCCn7AROiH7n3SXPPnmeTJJ3T-0W8aKDbrRfGGOPFZyaEQ8_l61Jt4FdZhyeEJNx9cHdiSmlcubVqWw6JeCcbj54GDoJw0B50SeiNwj_GpvisMdxH2df9KrHIS7ixMlQfv1ox_veBDlD725-Hp9vMc4gapmihR8_-4xR6ghQYPDjlO4ZRZytsS3c5MDIWO7yHp6UFjZBYYS9gt7jM8dxtxZs3DNofXPdMXLfRbDiY3aVBPTAheHZ1gg16ioqExooIKfLYMAKtbmTElJFcMuYCoV1clAJqzcEIwaQCeMBySQTjUe8INYuyMMcIi74D3UYbJVROXQ0IuMEkDv6ZWBMlyAlqwWosX6uWGMt6IU7_Pn2FdtNZNl6OR5OHM7QHsakUr-eoadcbc-HyupWXPpyfEoCjSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Machine+Learning+and+Intelligent+Systems+Engineering+%28MLISE%29&rft.atitle=Using+Hidden+Markov+Model+to+Predict+the+Potential+Intent+of+User%27s+Gaze+Behavior&rft.au=Guogang&rft.au=Gaozheng&rft.au=Wushiqian&rft.au=Yumin&rft.date=2021-07-01&rft.pub=IEEE&rft.spage=38&rft.epage=41&rft_id=info:doi/10.1109%2FMLISE54096.2021.00015&rft.externalDocID=9611692