A Joint-Entropy Approach To Time-series Classification

In this paper, the problem of entropy-based classification of time-series into stochastic, chaotic, and periodic is addressed, followed by proposing an alternative joint-entropy approach to time series classification. These data-driven methods describe the behavior of a signal, using the association...

Full description

Saved in:
Bibliographic Details
Published in2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS) pp. 1 - 7
Main Authors Safarihamid, Kimia, Pourafzal, Alireza, Fereidunian, Alireza
Format Conference Proceeding
LanguageEnglish
Published IEEE 29.12.2021
Subjects
Online AccessGet full text
DOI10.1109/ICSPIS54653.2021.9729371

Cover

Abstract In this paper, the problem of entropy-based classification of time-series into stochastic, chaotic, and periodic is addressed, followed by proposing an alternative joint-entropy approach to time series classification. These data-driven methods describe the behavior of a signal, using the association of the entropy of a time-series with emergence and self-organization, as complex systems characteristics. First, we deduce that certain groups of entropies, namely Fuzzy entropy, and Distribution entropy, share more similarities with emergence, while permutation and dispersion entropies could be associated with self-organization. Then, we utilize these resemblances to propose a joint-entropy alternative approach, in which one of the specific entropies is presented for each characteristic. Further, in simulations, we evaluated the performance of our proposed approach, comparing with single entropy methods, using different classifiers and decision boundaries. The results reveal an excellent performance of 98% accuracy for simultaneous utilization of the Distribution and Permutation entropies as the input features of Random Forest classifier, while this value is at best 89% for when only a single entropy is fed to the classifier.
AbstractList In this paper, the problem of entropy-based classification of time-series into stochastic, chaotic, and periodic is addressed, followed by proposing an alternative joint-entropy approach to time series classification. These data-driven methods describe the behavior of a signal, using the association of the entropy of a time-series with emergence and self-organization, as complex systems characteristics. First, we deduce that certain groups of entropies, namely Fuzzy entropy, and Distribution entropy, share more similarities with emergence, while permutation and dispersion entropies could be associated with self-organization. Then, we utilize these resemblances to propose a joint-entropy alternative approach, in which one of the specific entropies is presented for each characteristic. Further, in simulations, we evaluated the performance of our proposed approach, comparing with single entropy methods, using different classifiers and decision boundaries. The results reveal an excellent performance of 98% accuracy for simultaneous utilization of the Distribution and Permutation entropies as the input features of Random Forest classifier, while this value is at best 89% for when only a single entropy is fed to the classifier.
Author Fereidunian, Alireza
Pourafzal, Alireza
Safarihamid, Kimia
Author_xml – sequence: 1
  givenname: Kimia
  surname: Safarihamid
  fullname: Safarihamid, Kimia
  email: k_safarihamid@elec.iust.ac.ir
  organization: School of Electrical Engineering, Iran University of Science and Technology,Tehran,Iran
– sequence: 2
  givenname: Alireza
  surname: Pourafzal
  fullname: Pourafzal, Alireza
  email: pourafzal@email.kntu.ac.ir
  organization: K. N. Toosi University of Technology,Faculty of Electrical Engineering,Tehran,Iran
– sequence: 3
  givenname: Alireza
  surname: Fereidunian
  fullname: Fereidunian, Alireza
  email: fereidunian@kntu.ac.ir
  organization: K. N. Toosi University of Technology,Faculty of Electrical Engineering,Tehran,Iran
BookMark eNotj8tKw0AUQEfQhdZ-gZv5gcS587yzDKFqSkGhcV0mkxscaDMhyaZ_r2BX56wOnCd2P-aRGOMgSgDhX5v6-NUcjbZGlVJIKL2TXjm4Y1vvEKw1WniF-pHZiu9zGtdiN65znq68mqY5h_jD28zbdKFioTnRwutzWJY0pBjWlMdn9jCE80LbGzfs-23X1h_F4fO9qatDkQBwLSSB7hR6DApUjCa4TvZBd5qMRUlCxMH_iSGrnADUgNhjB9EoQtebQW3Yy383EdFpmtMlzNfT7Ub9AuNCQ6g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSPIS54653.2021.9729371
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665409384
166540938X
EndPage 7
ExternalDocumentID 9729371
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-2e14b3898a313cc5a7b2da4b4e5682e00cf96825e6370184188d8b1c53e87d5f3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:26 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-2e14b3898a313cc5a7b2da4b4e5682e00cf96825e6370184188d8b1c53e87d5f3
PageCount 7
ParticipantIDs ieee_primary_9729371
PublicationCentury 2000
PublicationDate 2021-Dec.-29
PublicationDateYYYYMMDD 2021-12-29
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)
PublicationTitleAbbrev ICSPIS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7924023
Snippet In this paper, the problem of entropy-based classification of time-series into stochastic, chaotic, and periodic is addressed, followed by proposing an...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms chaotic time-series
Complexity theory
emergence
Entropy
Intelligent systems
Measurement
self-organization
Stochastic processes
Task analysis
Time series analysis
time-series classification
Title A Joint-Entropy Approach To Time-series Classification
URI https://ieeexplore.ieee.org/document/9729371
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7WU09t0dI3e-ixWbPJZpMcRSoqWAQVvEkesyCFXWnXQ_vrm6yrpaWH3oYQSCYTmJnk-2YQeuSKUtDgsCC5walgFOs8S7AAKbXQWiU68J2nL9lomU5WfNVCT0cuDADU4DOIg1j_5bvS7sJTWU_5SJAFwviJEGrP1TqAc4jqjQfz2Xgemnszn_fRJG6m_-ibUruN4RmaHhbco0Ve411lYvv5qxbjf3d0jrrfBL1odnQ9F6gFRQdl_WhSbooKPwf0-fYj6jf1wqNFGQWqBw7XDd6juhFmgAjVVumi5fB5MRjhpi0C3vhsoMIUktT4OENqljBruRaGOp2aFHgmKRBic-UFDhkTxCdwiZROmsRyBlI4nrNL1C7KAq5QlPvgwgoliQ4FywXRGoDlNHdOC-eDg2vUCTqvt_vKF-tG3Zu_h2_RaTj3APag6g61q7cd3HuXXZmH2lZfWMyXQA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa8IwFA7iDttpGzr2eznsuNQ2aZr0KKKoUxFU8CZp8goyaMXVw_bXL6nVsbHDbo9ASMILvPeS7_seQs88phQUGCL8NCGhYJSoNAqIACmVUCoOlOM7jydRfxEOl3xZQy9HLgwAlOAz8JxZ_uWbXO_cU1krtpkgc4TxE26rCrFnax3gOX7cGnRm08HMtfdmtvKjgVdN-NE5pQwcvXM0Piy5x4u8ebsi8fTnLzXG_-7pAjW_KXp4egw-l6gGWQNFbTzM11lBug5_vvnA7UoxHM9z7MgexF04eMdlK0wHEir90kSLXnfe6ZOqMQJZ23qgIBSCMLGZhlQsYFpzJRJqVJiEwCNJwfd1GluDQ8SEb0u4QEojk0BzBlIYnrIrVM_yDK4RTm16oUUsfeUky4WvFABLaWqMEsamBzeo4c682uy1L1bVcW__Hn5Cp_35eLQaDSavd-jM-cBBP2h8j-rFdgcPNoAXyWPpty9_AJqR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+7th+International+Conference+on+Signal+Processing+and+Intelligent+Systems+%28ICSPIS%29&rft.atitle=A+Joint-Entropy+Approach+To+Time-series+Classification&rft.au=Safarihamid%2C+Kimia&rft.au=Pourafzal%2C+Alireza&rft.au=Fereidunian%2C+Alireza&rft.date=2021-12-29&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICSPIS54653.2021.9729371&rft.externalDocID=9729371