MSE Analysis of Bi-scale LMS Used for Narrowband Interference Cancellation
Adaptive LMS (Least Mean Square) equalizers are widely used in digital communication systems for their simplicity of implementation. Conventional adaptive filtering theory suggests that the upper bound on performance of such an equalizer is determined by the performance of a Wiener filter of the sam...
        Saved in:
      
    
          | Published in | 2020 IEEE Latin-American Conference on Communications (LATINCOM) pp. 1 - 6 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        18.11.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/LATINCOM50620.2020.9282346 | 
Cover
| Abstract | Adaptive LMS (Least Mean Square) equalizers are widely used in digital communication systems for their simplicity of implementation. Conventional adaptive filtering theory suggests that the upper bound on performance of such an equalizer is determined by the performance of a Wiener filter of the same structure. However, in the presence of a narrowband interferer the performance of the (normalized) LMS equalizer can be better than that of its Wiener counterpart. The Bi-scale NLMS (BLMS) algorithm enhances this NLMS (Normalized LMS) characteristic by simultaneously using two instantiations of NLMS that run at very different time scales. In this paper, the derivation of a predictive model for the MSE (Mean Square Error) performance of the BLMS equalizer as narrowband interference canceler is shown. The predictive model can be used to adjust canceler parameters on the fly without the delay needed for time-consuming simulations. Simulation results validate the proposed MSE model, which is shown to predict performance of the BLMS equalizer over a wide range of parameters. | 
    
|---|---|
| AbstractList | Adaptive LMS (Least Mean Square) equalizers are widely used in digital communication systems for their simplicity of implementation. Conventional adaptive filtering theory suggests that the upper bound on performance of such an equalizer is determined by the performance of a Wiener filter of the same structure. However, in the presence of a narrowband interferer the performance of the (normalized) LMS equalizer can be better than that of its Wiener counterpart. The Bi-scale NLMS (BLMS) algorithm enhances this NLMS (Normalized LMS) characteristic by simultaneously using two instantiations of NLMS that run at very different time scales. In this paper, the derivation of a predictive model for the MSE (Mean Square Error) performance of the BLMS equalizer as narrowband interference canceler is shown. The predictive model can be used to adjust canceler parameters on the fly without the delay needed for time-consuming simulations. Simulation results validate the proposed MSE model, which is shown to predict performance of the BLMS equalizer over a wide range of parameters. | 
    
| Author | Louis Beex, A. A. Ikuma, Takeshi Roy, Tamoghna  | 
    
| Author_xml | – sequence: 1 givenname: Tamoghna surname: Roy fullname: Roy, Tamoghna email: tamoghna@vt.edu organization: Wireless@VT - DSRL - ECE, Virginia Tech,Blacksburg,VA,24061 – sequence: 2 givenname: Takeshi surname: Ikuma fullname: Ikuma, Takeshi email: tikuma@lsu.edu organization: Otolaryngology - Head and Neck Surgery, LSU Health Sciences Center,New Orleans,LA,70112 – sequence: 3 givenname: A. A. surname: Louis Beex fullname: Louis Beex, A. A. email: beex@vt.edu organization: Wireless@VT - DSRL - ECE, Virginia Tech,Blacksburg,VA,24061  | 
    
| BookMark | eNotj09LwzAcQCPoQec-gZfgvTO_JM2fYy3TVdrtsO08kuYXKNRU0oHs2ztwl_duD94TuU9TQkJega0AmH1rq0OzrXddyRRnK86usNxwIdUdWVptQHMDxjIBj-Sr269pldx4mYeZTpG-D8XcuxFp2-3pccZA45Tp1uU8_XqXAm3SGXPEjKlHWrsrx9Gdhyk9k4foxhmXNy_I8WN9qDdFu_ts6qotBgBzLjioKDQIbkXgEHoXS8GVkegDSuWNBsWjMdJLH1zvuCytj6WSQaHW3muxIC__3QERTz95-Hb5crodij-GJktR | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/LATINCOM50620.2020.9282346 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings Consulter via IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781728189031 1728189039  | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | 9282346 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i118t-216f3713293d21dcaf532684ebde46b87162f884b4bdaca2459bf564d6e77bb73 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:38:17 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i118t-216f3713293d21dcaf532684ebde46b87162f884b4bdaca2459bf564d6e77bb73 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_9282346 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-Nov.-18 | 
    
| PublicationDateYYYYMMDD | 2020-11-18 | 
    
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-18 day: 18  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2020 IEEE Latin-American Conference on Communications (LATINCOM) | 
    
| PublicationTitleAbbrev | LATINCOM | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.7435987 | 
    
| Snippet | Adaptive LMS (Least Mean Square) equalizers are widely used in digital communication systems for their simplicity of implementation. Conventional adaptive... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Bi-scale NLMS algorithm Equalizers Interference Mitigation Least Mean Square Algorithm Mean Square Error Estimate Mean square error methods Narrowband Non-Wiener Characteristics Prediction algorithms Predictive models Simulation Wiener filters  | 
    
| Title | MSE Analysis of Bi-scale LMS Used for Narrowband Interference Cancellation | 
    
| URI | https://ieeexplore.ieee.org/document/9282346 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na8IwFA_qaadt6Ng3Oey4aJumSXvcRBGxMlDBm-TlA2Sjjtle9tcvaatjY4ddSij0teQlee_3-t7vIfQgDAcNihOegvKhG0FSkEAotVamgTuVlY9DZnM-WbHpOl630OOxFsYYUyWfmb4fVv_y9U6VPlQ2SB0-iBhvo7ZIeF2r1fCIhkE6mD0tPRDO4oDTwCE_d2ke-NE5pTIc41OUHV5Z54u89ssC-urzFxvjf7_pDPW-S_Twy9H4nKOWybtomi1G-EAzgncWP2_J3inB4Fm2wKu90dj5qHheES-CzDWuAoIHeUO_At7q5LgeWo1Hy-GENM0SyNZhhILQkNtI-LbxkaahVtLGkWdyMaAN4-BxEbVJwoCBlkpSFqdgY840N0IAiOgCdfJdbi4R1lxKTSNlwVOeBxE4FOH2rYq18--ciCvU9fOwea_5MDbNFFz_ffsGnXhd-Pq9MLlFneKjNHfOkBdwX2nwCwRtn0g | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkbeLYTjNC1aqUpEJqK3WrfH5IFShFNFn49dhJWgRiYImsSLlEPtt33-XuO4TuIs1BgeQej0G60E3kxSDAI8QYEfv2VJYuDplO-GhOxwu2aKD7XS2M1rpMPtMdNyz_5au1LFyorBtbfBBSvof2GaWUVdVaNZNo4Mfd5GHmoHDKfE58i_3spX7kR--U0nQMj1C6fWmVMfLaKXLoyM9ffIz__apj1P4u0sMvO_Nzgho6a6FxOh3gLdEIXhv8uPI2Vg0aJ-kUzzdaYeul4klJvQgiU7gMCW7l9d0aeKvS49poPhzM-iOvbpfgrSxKyD0ScBNGrnF8qEigpDAsdFwuGpSmHBwyIqbXo0BBCSkIZTEYxqniOooAovAUNbN1ps8QVlwIRUJpwJGe-yFYHGF3rmTKenhWxDlquXlYvleMGMt6Ci7-vn2LDkazNFkmT5PnS3To9OKq-YLeFWrmH4W-tmY9h5tSm1-N4qKV | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+Latin-American+Conference+on+Communications+%28LATINCOM%29&rft.atitle=MSE+Analysis+of+Bi-scale+LMS+Used+for+Narrowband+Interference+Cancellation&rft.au=Roy%2C+Tamoghna&rft.au=Ikuma%2C+Takeshi&rft.au=Louis+Beex%2C+A.+A.&rft.date=2020-11-18&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FLATINCOM50620.2020.9282346&rft.externalDocID=9282346 |