Sensitivity analysis of noise robustness methods

The paper addresses the problem of noise robustness from the standpoint of the sensitivity to noise estimation errors. Since the noise is usually estimated in the power-spectral domain, we show that the implied error in the cepstral domain has interesting properties. These properties allow us to com...

Full description

Saved in:
Bibliographic Details
Published in2004 IEEE International Conference on Acoustics, Speech and Signal Processing Vol. 1; pp. I - 1037
Main Authors Brayda, L., Rigazio, L., Boman, R., Junqua, J.C.
Format Conference Proceeding
LanguageEnglish
Japanese
Published Piscataway, N.J IEEE 28.09.2004
Subjects
Online AccessGet full text
ISBN9780780384842
0780384849
ISSN1520-6149
DOI10.1109/ICASSP.2004.1326166

Cover

Abstract The paper addresses the problem of noise robustness from the standpoint of the sensitivity to noise estimation errors. Since the noise is usually estimated in the power-spectral domain, we show that the implied error in the cepstral domain has interesting properties. These properties allow us to compare two key methods used in noise robust speech recognition: spectral subtraction and parallel model combination. We show that parallel model combination has an advantage over spectral subtraction because it is less sensitive to noise estimation errors. Experimental results on the Aurora2 database confirm our theoretical findings, with parallel model combination clearly outperforming spectral subtraction and other well-known signal-based robustness methods. Our Aurora2 results, with parallel model combination, a basic MFCC front-end and a simple noise estimation, are close to the best results obtained on this database with very complex signal processing schemes.
AbstractList The paper addresses the problem of noise robustness from the standpoint of the sensitivity to noise estimation errors. Since the noise is usually estimated in the power-spectral domain, we show that the implied error in the cepstral domain has interesting properties. These properties allow us to compare two key methods used in noise robust speech recognition: spectral subtraction and parallel model combination. We show that parallel model combination has an advantage over spectral subtraction because it is less sensitive to noise estimation errors. Experimental results on the Aurora2 database confirm our theoretical findings, with parallel model combination clearly outperforming spectral subtraction and other well-known signal-based robustness methods. Our Aurora2 results, with parallel model combination, a basic MFCC front-end and a simple noise estimation, are close to the best results obtained on this database with very complex signal processing schemes.
Author Boman, R.
Rigazio, L.
Junqua, J.C.
Brayda, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Brayda
  fullname: Brayda, L.
  organization: Panasonic Speech Technol. Lab., Santa Barbara, CA, USA
– sequence: 2
  givenname: L.
  surname: Rigazio
  fullname: Rigazio, L.
  organization: Panasonic Speech Technol. Lab., Santa Barbara, CA, USA
– sequence: 3
  givenname: R.
  surname: Boman
  fullname: Boman, R.
  organization: Panasonic Speech Technol. Lab., Santa Barbara, CA, USA
– sequence: 4
  givenname: J.C.
  surname: Junqua
  fullname: Junqua, J.C.
  organization: Panasonic Speech Technol. Lab., Santa Barbara, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17566100$$DView record in Pascal Francis
BookMark eNpFkE9Lw0AUxBesYFv7CXrJxWPqe5vNZvcoRa1QUIiey2b_4Eq6KXlRyLc3EEEYmMP8GIZZsUXqkmdsi7BDBH3_sn-o67cdBxA7LLhEKa_YRlcKJhVKKMEXbIklh1yi0DdsRfQFAKoSasmg9oniEH_iMGYmmXakSFkXstRF8lnfNd80JE-Unf3w2Tm6ZdfBtOQ3f75mH0-P7_tDfnx9nqYc84goIXdCNIFrVxjDvRWykUIpaxrgoah0YzSfBpcNojfcWvToKmUhCAdOQ1CyWLO7ufdiyJo29CbZSKdLH8-mH09YlVIiwMRtZy567__j-YjiF7VaU4c
ContentType Conference Proceeding
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID 6IE
6IH
CBEJK
RIE
RIO
IQODW
DOI 10.1109/ICASSP.2004.1326166
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Pascal-Francis
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 1037
ExternalDocumentID 17566100
1326166
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
AAVQY
IQODW
RIB
RIC
ID FETCH-LOGICAL-i1160-d44bf29d3aa2ec46b6488cab02f379ba922005b11ea2cc1e1d78c0f4d0d90f863
IEDL.DBID RIE
ISBN 9780780384842
0780384849
ISSN 1520-6149
IngestDate Wed Apr 02 07:19:15 EDT 2025
Tue Aug 26 18:33:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords Estimation error
Spectral method
Sensitivity analysis
Error estimation
Man machine dialogue
Complex signal
Optimization
Cepstral analysis
User interface
Speech recognition
Database
Signal processing
Noise immunity
Robustness
Speech processing
Power spectrum
Language English
Japanese
License CC BY 4.0
LinkModel DirectLink
MeetingName 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (proceedings)
MergedId FETCHMERGED-LOGICAL-i1160-d44bf29d3aa2ec46b6488cab02f379ba922005b11ea2cc1e1d78c0f4d0d90f863
ParticipantIDs ieee_primary_1326166
pascalfrancis_primary_17566100
PublicationCentury 2000
PublicationDate 2004-09-28
PublicationDateYYYYMMDD 2004-09-28
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09-28
  day: 28
PublicationDecade 2000
PublicationPlace Piscataway, N.J
PublicationPlace_xml – name: Piscataway, N.J
PublicationTitle 2004 IEEE International Conference on Acoustics, Speech and Signal Processing
PublicationTitleAbbrev ICASSP
PublicationYear 2004
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
ssj0000454154
Score 1.5549791
Snippet The paper addresses the problem of noise robustness from the standpoint of the sensitivity to noise estimation errors. Since the noise is usually estimated in...
SourceID pascalfrancis
ieee
SourceType Index Database
Publisher
StartPage I
SubjectTerms Acoustic noise
Additive noise
Applied sciences
Automatic speech recognition
Cepstral analysis
Estimation error
Exact sciences and technology
Information, signal and communications theory
Maximum likelihood estimation
Noise robustness
Sensitivity analysis
Signal processing
Speech enhancement
Speech processing
Telecommunications and information theory
Title Sensitivity analysis of noise robustness methods
URI https://ieeexplore.ieee.org/document/1326166
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwEBZJpnbpIylNH8FDx9qRbEWWxhIa0kJKIA1kC3pCKNgltpf--kq28mjp0M3CGHM6oU93uvs-AB4UH2lFMA0lJDDEXMtQxHAUEs0tmEnFk1olYvZGpkv8uhqtWuBx3wujta6Lz3TkHuu7fJXLyqXKhjZyIoiQNminlDS9Wvt8iqOSQw4a_S5M01o5y8KTC48wq0N2ChOKKWaeeWc3jj0dEYJs-DJ-WizmdeAY-f954RVXNskLO3Omkbw4wqHJGZjtLGjKTz6iqhSR_PpF7vhfE89B79DxF8z3WHYBWjq7BKdHZIVdABeu1r0Rmwi45zIJchNk-abQwTYXVVG6jTNoVKmLHlhOnt_H09DrLYQbhKynFMbCxEwlnMdaYiKsD6nkAsYmSZngLHYpKIGQ9aOUSCOVUgkNVlAxaChJrkAnyzN9DQKBEbUoYISREAtBmRaQa840T5CEKeuDrrN9_dlQaqy92X0w-DHFh_epPXYiCG_-_u4WnDQVNSyM6R3olNtK39vDQikG9Sr5BmdmuBw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbsIwEB1Remh76QJV6UJz6LEBO3Ec-1ihImgBIQESN-QtEqpEKpZLv752EpZWPfQWK4qi8Vh-nvHMewBPWkRGU8J8hSjyiTDKlwGKfGqEBTOlRZipRPQHtDMhb9NoWoLnXS-MMSYrPjMN95jd5etUbVyqrGkjJ4opPYLjiBAS5d1au4yKI5PDDhyLfZjFmXaWBSgXIBGeBe0MhYwwwgvune04KAiJMOLNbutlNBpmoWOj-GMhveIKJ8XKzl2Si14cIFH7HPpbG_IClI_GZi0b6usXveN_jbyA6r7nzxvu0OwSSmZxBWcHdIUVQCNX7Z7LTXiiYDPx0sRbpPOV8Zap3KzWbuv0cl3qVRUm7ddxq-MXigv-HGPrK02ITAKuQyECowiV1otMCYmCJIy5FDxwSSiJsfWkUthgHTOFEqKR5ihhNLyG8iJdmBvwJMHM4kAiE4WIlIwbiYQR3IgQKxTzGlSc7bPPnFRjVphdg_qPKd6_j-3BEyN0-_d3j3DSGfd7s1538H4Hp3l9DfcDdg_l9XJjHuzRYS3r2Yr5Bj-ru2k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2004+IEEE+International+Conference+on+Acoustics%2C+Speech%2C+and+Signal+Processing&rft.atitle=Sensitivity+analysis+of+noise+robustness+methods&rft.au=Brayda%2C+L.&rft.au=Rigazio%2C+L.&rft.au=Boman%2C+R.&rft.au=Junqua%2C+J.C.&rft.date=2004-09-28&rft.pub=IEEE&rft.isbn=9780780384842&rft.issn=1520-6149&rft.volume=1&rft.spage=I&rft.epage=1037&rft_id=info:doi/10.1109%2FICASSP.2004.1326166&rft.externalDocID=1326166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon