Remote Sensing of Vegetation
The available knowledge about vegetation spatial distribution, phenological cycles, physiological and morphological modifications provide information about the edaphic, climatic, geological and physiographic characteristics of an area on planet Earth over time. The development of sensors, visual ima...
Saved in:
| Published in | Remote Sensing and Digital Image Processing with R Vol. 1; pp. 141 - 168 |
|---|---|
| Main Authors | , |
| Format | Book Chapter |
| Language | English |
| Published |
United Kingdom
CRC Press
2023
Taylor & Francis Group |
| Edition | 1 |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781032359229 9781032359823 103235982X 1032359226 |
| DOI | 10.1201/9781003329664-4 |
Cover
| Abstract | The available knowledge about vegetation spatial distribution, phenological cycles, physiological and morphological modifications provide information about the edaphic, climatic, geological and physiographic characteristics of an area on planet Earth over time. The development of sensors, visual image analysis, and digital image processing algorithms makes it possible to obtain biophysical information from different vegetation landscapes through remote sensing. Fundamentals of photosynthesis are addressed to learn about the interaction between electromagnetic radiation and plant structure, the factors affecting the variation of the spectral signature of vegetation, and the factors of relief, shade, planting orientation and cultural treatments that affect the quality of the remotely sensed data, as well as the monitoring of phenological characteristics of vegetation over time by remote sensing. Different vegetation indices are detailed according to their practical applications. A computational practice is performed to remotely assess vegetation vigor based on Landsat-8 OLI data and NDVI time series obtained by MODIS sensor. Exercises on scientific applications of remote sensing image processing of vegetation are presented, suggestion for research in the area, as well as Internet resources to illustrate the subject covered with videos on the subject. |
|---|---|
| AbstractList | The available knowledge about vegetation spatial distribution, phenological cycles, physiological and morphological modifications provide information about the edaphic, climatic, geological and physiographic characteristics of an area on planet Earth over time. The development of sensors, visual image analysis, and digital image processing algorithms makes it possible to obtain biophysical information from different vegetation landscapes through remote sensing. Fundamentals of photosynthesis are addressed to learn about the interaction between electromagnetic radiation and plant structure, the factors affecting the variation of the spectral signature of vegetation, and the factors of relief, shade, planting orientation and cultural treatments that affect the quality of the remotely sensed data, as well as the monitoring of phenological characteristics of vegetation over time by remote sensing. Different vegetation indices are detailed according to their practical applications. A computational practice is performed to remotely assess vegetation vigor based on Landsat-8 OLI data and NDVI time series obtained by MODIS sensor. Exercises on scientific applications of remote sensing image processing of vegetation are presented, suggestion for research in the area, as well as Internet resources to illustrate the subject covered with videos on the subject. |
| Author | Sanches, Luciana Alves, Marcelo de Carvalho |
| Author_xml | – sequence: 1 givenname: Marcelo de Carvalho surname: Alves fullname: Alves, Marcelo de Carvalho – sequence: 2 givenname: Luciana surname: Sanches fullname: Sanches, Luciana |
| BookMark | eNpVkEtPwzAQhI14CFp65sKhfyCw9sZxfEQVL6kSEq-rtUk2JSK1SxxA_HuM2gvaw2pW-mY1MxEHPngW4kzChVQgL60pJQCiskWRZ_memG0vUFqNBezvNCrUVil7JCYSk7aF0eWxmMXYVaBlqTHNiTh_5HUYef7EPnZ-NQ_t_JVXPNLYBX8qDlvqI892eypebq6fF3fZ8uH2fnG1zDoJpcpqZLYaEPI8fbINloBkjVZGVWAaoqJtGmwqYADdKEYipJoYVNVKQoNTgVvfzRA-PjmOjqsQ3mv240B9_UabkYfojNK51uCkdFKrRN1uqc63YVjTdxj6xo3004ehHcjXXfxziU4mJDXn_jXncveVTFNKhb-F7GHr |
| ContentType | Book Chapter |
| Copyright | 2023 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC |
| DBID | FFUUA |
| DEWEY | 621.3678 |
| DOI | 10.1201/9781003329664-4 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Visual Arts Engineering |
| EISBN | 9781000895360 100089536X 1003329667 9781003329664 9781000895414 1000895416 |
| Edition | 1 |
| EndPage | 168 |
| ExternalDocumentID | EBC7254550_11_152 10_1201_9781003329664_4_version2 |
| GroupedDBID | 38. AABBV AAMRC ABEQL ABRNW ACPKY ADYHE AEOGL AESSL AEUHU AFHNJ AFUZJ AIOUF AIXXW AKSCQ ALMA_UNASSIGNED_HOLDINGS ALPYH AXTGW B0D B0E BBABE CZZ EBATF ENU INALI JTX NEQ AHFFV FFUUA |
| ID | FETCH-LOGICAL-i1082-c3ee95030443819d3803a975272b07daa6fdd3db0e005d2e3aa3acae02bf1a373 |
| IEDL.DBID | ENU |
| ISBN | 9781032359229 9781032359823 103235982X 1032359226 |
| IngestDate | Wed Oct 29 21:46:41 EDT 2025 Thu Mar 06 04:57:09 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Landsat-8 OLI Image Solar Azimuth MODIS Sensor Data Spongy Mesophyll Digital Image Processing UTM Zone 23S Leaf Area Index Healthy Canopy Sinusoidal Projection ESRI Shapefile R Phenological Cycle Plant Canopy Canopy MODIS Sensor vegetation index Intercellular Air Spaces phenology Remote Sensing Remote Sensing Data Landsat-8 OLI Data Landsat-8 OLI Sensor Spectral Bands spectral signature Vegetation Vigor Vegetation Indices Thermal Infrared Visual Image Analysis Moisture Content Pest Organisms |
| LCCallNum | G70.4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i1082-c3ee95030443819d3803a975272b07daa6fdd3db0e005d2e3aa3acae02bf1a373 |
| OCLC | 1381096758 |
| PQID | EBC7254550_11_152 |
| PageCount | 28 |
| ParticipantIDs | proquest_ebookcentralchapters_7254550_11_152 informaworld_taylorfrancisbooks_10_1201_9781003329664_4_version2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United Kingdom |
| PublicationPlace_xml | – name: United Kingdom |
| PublicationTitle | Remote Sensing and Digital Image Processing with R |
| PublicationYear | 2023 |
| Publisher | CRC Press Taylor & Francis Group |
| Publisher_xml | – name: CRC Press – name: Taylor & Francis Group |
| SSID | ssib051853535 ssj0002847414 |
| Score | 1.6781474 |
| Snippet | The available knowledge about vegetation spatial distribution, phenological cycles, physiological and morphological modifications provide information about the... |
| SourceID | proquest informaworld |
| SourceType | Publisher |
| StartPage | 141 |
| Title | Remote Sensing of Vegetation |
| URI | https://www.taylorfrancis.com/books/9781003329664/chapters/10.1201/9781003329664-4 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7254550&ppg=152&c=UERG |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVKGUAMvMWjoAyMpDh-NM6GVLVCSHQoFHWz7PimBaQU0RQJvh47DyCFDcbIURzfOPY59vU5CJ3FOFYsAO1TknR8FpDAV5Z1-IJEMYiIczDuNPLNoHM1YtdjPm6gYXUWxqVVZjlXTQpjiXy0doBz7sRgA-c9RixEZxfxVD07AcpCIgEH9WKfraBVSzWwczXoDUZVH-NufuIlRHjMF5eYnVSd-5OTlqM8snjk60KQUqXnszCqXQtCS72gX95gSf30x2ifT2H9TTSvGl9krjy1F5lux-9LupD_G50ttOEOU3jd4r5t1IB0B62VzuvTt13UGoLtLODdukT6dOLNEu8eJmUO5B4a9Xt33Su_dGzwHwKLJfyYAkTc7bY65bDIUIGpikJOQqJxaJTqJMZQozHYn98QoEpRFSvARCeBoiHdR810lsIB8oxIwGAtjBbAuACdMGZCqmw1Og4UOUSX34Mra2HJIyIdv7FNl7WmSyZfi5VI-4jz6oPIfGu6zIetYidDy54tg7MsSVqYc_T3Go_RurOrL5ZwWqiZvSzgxIKaTJ_mvfQD1afmMg |
| linkProvider | CRC Press LLC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Remote+Sensing+and+Digital+Image+Processing+with+R&rft.au=Alves%2C+Marcelo+de+Carvalho&rft.au=Sanches%2C+Luciana&rft.atitle=Remote+Sensing+of+Vegetation&rft.date=2023-01-01&rft.pub=CRC+Press&rft.isbn=9781032359823&rft.volume=1&rft.spage=141&rft.epage=168&rft_id=info:doi/10.1201%2F9781003329664-4&rft.externalDocID=10_1201_9781003329664_4_version2 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7254550-l.jpg |