Remote Sensing of Vegetation

The available knowledge about vegetation spatial distribution, phenological cycles, physiological and morphological modifications provide information about the edaphic, climatic, geological and physiographic characteristics of an area on planet Earth over time. The development of sensors, visual ima...

Full description

Saved in:
Bibliographic Details
Published inRemote Sensing and Digital Image Processing with R Vol. 1; pp. 141 - 168
Main Authors Alves, Marcelo de Carvalho, Sanches, Luciana
Format Book Chapter
LanguageEnglish
Published United Kingdom CRC Press 2023
Taylor & Francis Group
Edition1
Subjects
Online AccessGet full text
ISBN9781032359229
9781032359823
103235982X
1032359226
DOI10.1201/9781003329664-4

Cover

Abstract The available knowledge about vegetation spatial distribution, phenological cycles, physiological and morphological modifications provide information about the edaphic, climatic, geological and physiographic characteristics of an area on planet Earth over time. The development of sensors, visual image analysis, and digital image processing algorithms makes it possible to obtain biophysical information from different vegetation landscapes through remote sensing. Fundamentals of photosynthesis are addressed to learn about the interaction between electromagnetic radiation and plant structure, the factors affecting the variation of the spectral signature of vegetation, and the factors of relief, shade, planting orientation and cultural treatments that affect the quality of the remotely sensed data, as well as the monitoring of phenological characteristics of vegetation over time by remote sensing. Different vegetation indices are detailed according to their practical applications. A computational practice is performed to remotely assess vegetation vigor based on Landsat-8 OLI data and NDVI time series obtained by MODIS sensor. Exercises on scientific applications of remote sensing image processing of vegetation are presented, suggestion for research in the area, as well as Internet resources to illustrate the subject covered with videos on the subject.
AbstractList The available knowledge about vegetation spatial distribution, phenological cycles, physiological and morphological modifications provide information about the edaphic, climatic, geological and physiographic characteristics of an area on planet Earth over time. The development of sensors, visual image analysis, and digital image processing algorithms makes it possible to obtain biophysical information from different vegetation landscapes through remote sensing. Fundamentals of photosynthesis are addressed to learn about the interaction between electromagnetic radiation and plant structure, the factors affecting the variation of the spectral signature of vegetation, and the factors of relief, shade, planting orientation and cultural treatments that affect the quality of the remotely sensed data, as well as the monitoring of phenological characteristics of vegetation over time by remote sensing. Different vegetation indices are detailed according to their practical applications. A computational practice is performed to remotely assess vegetation vigor based on Landsat-8 OLI data and NDVI time series obtained by MODIS sensor. Exercises on scientific applications of remote sensing image processing of vegetation are presented, suggestion for research in the area, as well as Internet resources to illustrate the subject covered with videos on the subject.
Author Sanches, Luciana
Alves, Marcelo de Carvalho
Author_xml – sequence: 1
  givenname: Marcelo de Carvalho
  surname: Alves
  fullname: Alves, Marcelo de Carvalho
– sequence: 2
  givenname: Luciana
  surname: Sanches
  fullname: Sanches, Luciana
BookMark eNpVkEtPwzAQhI14CFp65sKhfyCw9sZxfEQVL6kSEq-rtUk2JSK1SxxA_HuM2gvaw2pW-mY1MxEHPngW4kzChVQgL60pJQCiskWRZ_memG0vUFqNBezvNCrUVil7JCYSk7aF0eWxmMXYVaBlqTHNiTh_5HUYef7EPnZ-NQ_t_JVXPNLYBX8qDlvqI892eypebq6fF3fZ8uH2fnG1zDoJpcpqZLYaEPI8fbINloBkjVZGVWAaoqJtGmwqYADdKEYipJoYVNVKQoNTgVvfzRA-PjmOjqsQ3mv240B9_UabkYfojNK51uCkdFKrRN1uqc63YVjTdxj6xo3004ehHcjXXfxziU4mJDXn_jXncveVTFNKhb-F7GHr
ContentType Book Chapter
Copyright 2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC
DBID FFUUA
DEWEY 621.3678
DOI 10.1201/9781003329664-4
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
Engineering
EISBN 9781000895360
100089536X
1003329667
9781003329664
9781000895414
1000895416
Edition 1
EndPage 168
ExternalDocumentID EBC7254550_11_152
10_1201_9781003329664_4_version2
GroupedDBID 38.
AABBV
AAMRC
ABEQL
ABRNW
ACPKY
ADYHE
AEOGL
AESSL
AEUHU
AFHNJ
AFUZJ
AIOUF
AIXXW
AKSCQ
ALMA_UNASSIGNED_HOLDINGS
ALPYH
AXTGW
B0D
B0E
BBABE
CZZ
EBATF
ENU
INALI
JTX
NEQ
AHFFV
FFUUA
ID FETCH-LOGICAL-i1082-c3ee95030443819d3803a975272b07daa6fdd3db0e005d2e3aa3acae02bf1a373
IEDL.DBID ENU
ISBN 9781032359229
9781032359823
103235982X
1032359226
IngestDate Wed Oct 29 21:46:41 EDT 2025
Thu Mar 06 04:57:09 EST 2025
IsPeerReviewed false
IsScholarly false
Keywords Landsat-8 OLI Image
Solar Azimuth
MODIS Sensor Data
Spongy Mesophyll
Digital Image Processing
UTM Zone 23S
Leaf Area Index
Healthy Canopy
Sinusoidal Projection
ESRI Shapefile
R
Phenological Cycle
Plant Canopy
Canopy
MODIS Sensor
vegetation index
Intercellular Air Spaces
phenology
Remote Sensing
Remote Sensing Data
Landsat-8 OLI Data
Landsat-8 OLI
Sensor Spectral Bands
spectral signature
Vegetation Vigor
Vegetation Indices
Thermal Infrared
Visual Image Analysis
Moisture Content
Pest Organisms
LCCallNum G70.4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1082-c3ee95030443819d3803a975272b07daa6fdd3db0e005d2e3aa3acae02bf1a373
OCLC 1381096758
PQID EBC7254550_11_152
PageCount 28
ParticipantIDs proquest_ebookcentralchapters_7254550_11_152
informaworld_taylorfrancisbooks_10_1201_9781003329664_4_version2
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Remote Sensing and Digital Image Processing with R
PublicationYear 2023
Publisher CRC Press
Taylor & Francis Group
Publisher_xml – name: CRC Press
– name: Taylor & Francis Group
SSID ssib051853535
ssj0002847414
Score 1.6781474
Snippet The available knowledge about vegetation spatial distribution, phenological cycles, physiological and morphological modifications provide information about the...
SourceID proquest
informaworld
SourceType Publisher
StartPage 141
Title Remote Sensing of Vegetation
URI https://www.taylorfrancis.com/books/9781003329664/chapters/10.1201/9781003329664-4
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7254550&ppg=152&c=UERG
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVKGUAMvMWjoAyMpDh-NM6GVLVCSHQoFHWz7PimBaQU0RQJvh47DyCFDcbIURzfOPY59vU5CJ3FOFYsAO1TknR8FpDAV5Z1-IJEMYiIczDuNPLNoHM1YtdjPm6gYXUWxqVVZjlXTQpjiXy0doBz7sRgA-c9RixEZxfxVD07AcpCIgEH9WKfraBVSzWwczXoDUZVH-NufuIlRHjMF5eYnVSd-5OTlqM8snjk60KQUqXnszCqXQtCS72gX95gSf30x2ifT2H9TTSvGl9krjy1F5lux-9LupD_G50ttOEOU3jd4r5t1IB0B62VzuvTt13UGoLtLODdukT6dOLNEu8eJmUO5B4a9Xt33Su_dGzwHwKLJfyYAkTc7bY65bDIUIGpikJOQqJxaJTqJMZQozHYn98QoEpRFSvARCeBoiHdR810lsIB8oxIwGAtjBbAuACdMGZCqmw1Og4UOUSX34Mra2HJIyIdv7FNl7WmSyZfi5VI-4jz6oPIfGu6zIetYidDy54tg7MsSVqYc_T3Go_RurOrL5ZwWqiZvSzgxIKaTJ_mvfQD1afmMg
linkProvider CRC Press LLC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Remote+Sensing+and+Digital+Image+Processing+with+R&rft.au=Alves%2C+Marcelo+de+Carvalho&rft.au=Sanches%2C+Luciana&rft.atitle=Remote+Sensing+of+Vegetation&rft.date=2023-01-01&rft.pub=CRC+Press&rft.isbn=9781032359823&rft.volume=1&rft.spage=141&rft.epage=168&rft_id=info:doi/10.1201%2F9781003329664-4&rft.externalDocID=10_1201_9781003329664_4_version2
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7254550-l.jpg