CNN in Malware Detection
This article presents a bibliometric analysis and review of the application of Convolutional Neural Networks (CNNs) in malware detection. Over the past decade, there has been a notable increase in research focused on using CNNs for malware classification, as evidenced by the rising number of publica...
Saved in:
| Published in | IEEE International Symposium on Computational Intelligence and Informatics pp. 63 - 68 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
19.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2471-9269 |
| DOI | 10.1109/CINTI63048.2024.10830884 |
Cover
| Abstract | This article presents a bibliometric analysis and review of the application of Convolutional Neural Networks (CNNs) in malware detection. Over the past decade, there has been a notable increase in research focused on using CNNs for malware classification, as evidenced by the rising number of publications across different years. This study goes beyond a simple literature review by exploring the progression of malware detection techniques that leverage the conversion of malware binaries into grayscale images, from their inception to current advancements. The review covers the evolution of these methods, detailing key findings and achievements. Furthermore, the article compares the results of various studies, specifically those that tested their models on the widely used Malimg dataset. This comparison highlights the effectiveness of each approach, offering insights into the accuracy and performance trends across different CNN-based malware detection frameworks. |
|---|---|
| AbstractList | This article presents a bibliometric analysis and review of the application of Convolutional Neural Networks (CNNs) in malware detection. Over the past decade, there has been a notable increase in research focused on using CNNs for malware classification, as evidenced by the rising number of publications across different years. This study goes beyond a simple literature review by exploring the progression of malware detection techniques that leverage the conversion of malware binaries into grayscale images, from their inception to current advancements. The review covers the evolution of these methods, detailing key findings and achievements. Furthermore, the article compares the results of various studies, specifically those that tested their models on the widely used Malimg dataset. This comparison highlights the effectiveness of each approach, offering insights into the accuracy and performance trends across different CNN-based malware detection frameworks. |
| Author | Fleiner, Rita Kail, Eszter Dobrovodsky, Patrik |
| Author_xml | – sequence: 1 givenname: Patrik surname: Dobrovodsky fullname: Dobrovodsky, Patrik email: dobrovodsky.patrik@uni-obuda.hu organization: Óbuda University,John von Neumann Fac. of Informatics,Budapest,Hungary – sequence: 2 givenname: Rita surname: Fleiner fullname: Fleiner, Rita email: fleiner.rita@nik.uni-obuda.hu organization: Óbuda University,John von Neumann Fac. of Informatics,Budapest,Hungary – sequence: 3 givenname: Eszter surname: Kail fullname: Kail, Eszter email: kail.eszter@nik.uni-obuda.hu organization: Óbuda University,John von Neumann Fac. of Informatics,Budapest,Hungary |
| BookMark | eNo1j01Lw0AQQFdRsNbcPXjIH0icyezXHCVaDdR4qeey2cxCpKaSBMR_r6DCg3d78C7V2XgcRakcoUQEvq2bdtdYAu3LCipdIngC7_WJytixJwNkSBOdqlWlHRZcWb5Q2Ty_AQBa_MGs1HXdtvkw5s_h8Bkmye9lkbgMx_FKnadwmCX781q9bh529VOxfXls6rttMSDYpeBEnWNiidjHgNpES9E4ZgPBJZMsC3gOPaRQdcFq1pKC7ZIR7LU3Qmt189sdRGT_MQ3vYfra_8_QN-p6PoY |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CINTI63048.2024.10830884 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore DIgital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore DIgital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350353433 |
| EISSN | 2471-9269 |
| EndPage | 68 |
| ExternalDocumentID | 10830884 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i106t-9f3b7939ec1dca145c63c579950a7f5f69e089ad0fa2ba6494efa6bf5e1d485e3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 22 08:32:11 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i106t-9f3b7939ec1dca145c63c579950a7f5f69e089ad0fa2ba6494efa6bf5e1d485e3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10830884 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-19 |
| PublicationDateYYYYMMDD | 2024-11-19 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Symposium on Computational Intelligence and Informatics |
| PublicationTitleAbbrev | CINTI |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001611615 |
| Score | 1.900702 |
| Snippet | This article presents a bibliometric analysis and review of the application of Convolutional Neural Networks (CNNs) in malware detection. Over the past decade,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 63 |
| SubjectTerms | Accuracy Analytical models CNN Convolutional neural networks Gray-scale Informatics Malimg Malware malware detection Systematic literature review Systematics Technological innovation |
| Title | CNN in Malware Detection |
| URI | https://ieeexplore.ieee.org/document/10830884 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEB2anHpKF5d0xYde7XqRFOvsNiSFmh4SyC1oGUFocUqwCfTrKylxQwuF3oRAoIVh9KT33gDcKwsBFEcSZSZTroQZjwqa6EgzkmgLByzq8izfik3m5HlBF3uxutfCIKInn2Hsmv4vX69V657KbIQXuY0K0oPeqGA7sdbhQYWl7vbSsXUS_lBOq9mUWbzuKFwZibvhPwqp-DwyHkDVzWBHH3mL20bG6vOXOeO_p3gCwUGyF75-J6NTOML6DAZdzYZwH8LnMCyrKlzV4Yt434oNho_YeDJWHcB8_DQrJ9G-OkK0sjCuibjJpQ0ujirVSqSEKpYr6vzdEjEy1DCOScGFTozIpGCEEzSCSUMx1aSgmF9Av17XOIRQcguCtEWryl6PhHPQF8Q5kEtFiUaNlxC4lS4_dgYYy26RV3_0X8Ox23An2Uv5DfSbTYu3Nnc38s6f2ReufZXc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL1oXeiqPir1PQu3M84jiZN1tbTaDi5a6K7kcQNFmUqZQfDrTdKORUFwF7IIeXC5Ock55wLcKgsBFEcSpiZVroQZD3Ma61AzEmsLByzq8izfgg2m5GlGZxuxutfCIKInn2Hkmv4vXy9V7Z7KbITnmY0Ksgt7lBBC13Kt7ZMKS9z9peHrxPyuNywmQ2YRuyNxpSRqBvhRSsVnkn4bimYOawLJa1RXMlKfv-wZ_z3JQ-hsRXvBy3c6OoIdLI-h3VRtCDZBfALdXlEEizIYi7cPscLgAStPxyo7MO0_TnqDcFMfIVxYIFeF3GTShhdHlWglEkIVyxR1Dm-xuDfUMI5xzoWOjUilYIQTNIJJQzHRJKeYnUKrXJbYhUByC4O0xavKXpCE89AXxHmQS0WJRo1n0HErnb-vLTDmzSLP_-i_gf3BZDyaj4bF8wUcuM13Ar6EX0KrWtV4ZTN5Ja_9-X0BvmCZKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+Computational+Intelligence+and+Informatics&rft.atitle=CNN+in+Malware+Detection&rft.au=Dobrovodsky%2C+Patrik&rft.au=Fleiner%2C+Rita&rft.au=Kail%2C+Eszter&rft.date=2024-11-19&rft.pub=IEEE&rft.eissn=2471-9269&rft.spage=63&rft.epage=68&rft_id=info:doi/10.1109%2FCINTI63048.2024.10830884&rft.externalDocID=10830884 |