CNN in Malware Detection

This article presents a bibliometric analysis and review of the application of Convolutional Neural Networks (CNNs) in malware detection. Over the past decade, there has been a notable increase in research focused on using CNNs for malware classification, as evidenced by the rising number of publica...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Symposium on Computational Intelligence and Informatics pp. 63 - 68
Main Authors Dobrovodsky, Patrik, Fleiner, Rita, Kail, Eszter
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.11.2024
Subjects
Online AccessGet full text
ISSN2471-9269
DOI10.1109/CINTI63048.2024.10830884

Cover

Abstract This article presents a bibliometric analysis and review of the application of Convolutional Neural Networks (CNNs) in malware detection. Over the past decade, there has been a notable increase in research focused on using CNNs for malware classification, as evidenced by the rising number of publications across different years. This study goes beyond a simple literature review by exploring the progression of malware detection techniques that leverage the conversion of malware binaries into grayscale images, from their inception to current advancements. The review covers the evolution of these methods, detailing key findings and achievements. Furthermore, the article compares the results of various studies, specifically those that tested their models on the widely used Malimg dataset. This comparison highlights the effectiveness of each approach, offering insights into the accuracy and performance trends across different CNN-based malware detection frameworks.
AbstractList This article presents a bibliometric analysis and review of the application of Convolutional Neural Networks (CNNs) in malware detection. Over the past decade, there has been a notable increase in research focused on using CNNs for malware classification, as evidenced by the rising number of publications across different years. This study goes beyond a simple literature review by exploring the progression of malware detection techniques that leverage the conversion of malware binaries into grayscale images, from their inception to current advancements. The review covers the evolution of these methods, detailing key findings and achievements. Furthermore, the article compares the results of various studies, specifically those that tested their models on the widely used Malimg dataset. This comparison highlights the effectiveness of each approach, offering insights into the accuracy and performance trends across different CNN-based malware detection frameworks.
Author Fleiner, Rita
Kail, Eszter
Dobrovodsky, Patrik
Author_xml – sequence: 1
  givenname: Patrik
  surname: Dobrovodsky
  fullname: Dobrovodsky, Patrik
  email: dobrovodsky.patrik@uni-obuda.hu
  organization: Óbuda University,John von Neumann Fac. of Informatics,Budapest,Hungary
– sequence: 2
  givenname: Rita
  surname: Fleiner
  fullname: Fleiner, Rita
  email: fleiner.rita@nik.uni-obuda.hu
  organization: Óbuda University,John von Neumann Fac. of Informatics,Budapest,Hungary
– sequence: 3
  givenname: Eszter
  surname: Kail
  fullname: Kail, Eszter
  email: kail.eszter@nik.uni-obuda.hu
  organization: Óbuda University,John von Neumann Fac. of Informatics,Budapest,Hungary
BookMark eNo1j01Lw0AQQFdRsNbcPXjIH0icyezXHCVaDdR4qeey2cxCpKaSBMR_r6DCg3d78C7V2XgcRakcoUQEvq2bdtdYAu3LCipdIngC7_WJytixJwNkSBOdqlWlHRZcWb5Q2Ty_AQBa_MGs1HXdtvkw5s_h8Bkmye9lkbgMx_FKnadwmCX781q9bh529VOxfXls6rttMSDYpeBEnWNiidjHgNpES9E4ZgPBJZMsC3gOPaRQdcFq1pKC7ZIR7LU3Qmt189sdRGT_MQ3vYfra_8_QN-p6PoY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CINTI63048.2024.10830884
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore DIgital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore DIgital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350353433
EISSN 2471-9269
EndPage 68
ExternalDocumentID 10830884
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i106t-9f3b7939ec1dca145c63c579950a7f5f69e089ad0fa2ba6494efa6bf5e1d485e3
IEDL.DBID RIE
IngestDate Wed Jan 22 08:32:11 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-9f3b7939ec1dca145c63c579950a7f5f69e089ad0fa2ba6494efa6bf5e1d485e3
PageCount 6
ParticipantIDs ieee_primary_10830884
PublicationCentury 2000
PublicationDate 2024-Nov.-19
PublicationDateYYYYMMDD 2024-11-19
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-19
  day: 19
PublicationDecade 2020
PublicationTitle IEEE International Symposium on Computational Intelligence and Informatics
PublicationTitleAbbrev CINTI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001611615
Score 1.900702
Snippet This article presents a bibliometric analysis and review of the application of Convolutional Neural Networks (CNNs) in malware detection. Over the past decade,...
SourceID ieee
SourceType Publisher
StartPage 63
SubjectTerms Accuracy
Analytical models
CNN
Convolutional neural networks
Gray-scale
Informatics
Malimg
Malware
malware detection
Systematic literature review
Systematics
Technological innovation
Title CNN in Malware Detection
URI https://ieeexplore.ieee.org/document/10830884
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEB2anHpKF5d0xYde7XqRFOvsNiSFmh4SyC1oGUFocUqwCfTrKylxQwuF3oRAoIVh9KT33gDcKwsBFEcSZSZTroQZjwqa6EgzkmgLByzq8izfik3m5HlBF3uxutfCIKInn2Hsmv4vX69V657KbIQXuY0K0oPeqGA7sdbhQYWl7vbSsXUS_lBOq9mUWbzuKFwZibvhPwqp-DwyHkDVzWBHH3mL20bG6vOXOeO_p3gCwUGyF75-J6NTOML6DAZdzYZwH8LnMCyrKlzV4Yt434oNho_YeDJWHcB8_DQrJ9G-OkK0sjCuibjJpQ0ujirVSqSEKpYr6vzdEjEy1DCOScGFTozIpGCEEzSCSUMx1aSgmF9Av17XOIRQcguCtEWryl6PhHPQF8Q5kEtFiUaNlxC4lS4_dgYYy26RV3_0X8Ox23An2Uv5DfSbTYu3Nnc38s6f2ReufZXc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL1oXeiqPir1PQu3M84jiZN1tbTaDi5a6K7kcQNFmUqZQfDrTdKORUFwF7IIeXC5Ock55wLcKgsBFEcSpiZVroQZD3Ma61AzEmsLByzq8izfgg2m5GlGZxuxutfCIKInn2Hkmv4vXy9V7Z7KbITnmY0Ksgt7lBBC13Kt7ZMKS9z9peHrxPyuNywmQ2YRuyNxpSRqBvhRSsVnkn4bimYOawLJa1RXMlKfv-wZ_z3JQ-hsRXvBy3c6OoIdLI-h3VRtCDZBfALdXlEEizIYi7cPscLgAStPxyo7MO0_TnqDcFMfIVxYIFeF3GTShhdHlWglEkIVyxR1Dm-xuDfUMI5xzoWOjUilYIQTNIJJQzHRJKeYnUKrXJbYhUByC4O0xavKXpCE89AXxHmQS0WJRo1n0HErnb-vLTDmzSLP_-i_gf3BZDyaj4bF8wUcuM13Ar6EX0KrWtV4ZTN5Ja_9-X0BvmCZKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+Computational+Intelligence+and+Informatics&rft.atitle=CNN+in+Malware+Detection&rft.au=Dobrovodsky%2C+Patrik&rft.au=Fleiner%2C+Rita&rft.au=Kail%2C+Eszter&rft.date=2024-11-19&rft.pub=IEEE&rft.eissn=2471-9269&rft.spage=63&rft.epage=68&rft_id=info:doi/10.1109%2FCINTI63048.2024.10830884&rft.externalDocID=10830884