Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures

The contemporary diagnosis of epileptic seizures is dominated by non-invasive EEG signal analysis and classification. In this paper, we propose a patient-specific seizure detection technique, which selects the optimal feature subsets and trains a dedicated classifier for each patient in order to max...

Full description

Saved in:
Bibliographic Details
Published inIET Intelligent Signal Processing Conference 2013 (ISP 2013) p. 7.P06
Main Authors Zabihi, M, Kiranyaz, S, Ince, T, Gabbouj, M
Format Conference Proceeding
LanguageEnglish
Published Stevenage, UK IET 2013
Subjects
Online AccessGet full text
ISBN1849197741
9781849197748
DOI10.1049/cp.2013.2060

Cover

Abstract The contemporary diagnosis of epileptic seizures is dominated by non-invasive EEG signal analysis and classification. In this paper, we propose a patient-specific seizure detection technique, which selects the optimal feature subsets and trains a dedicated classifier for each patient in order to maximize the classification performance. Our method exploits time domain, frequency domain, time-frequency domain and non-linear feature sets. Then, by using Conditional Mutual Information Maximization (CMIM) as the feature selection method the optimal feature subset is chosen over which the Support Vector Machine is trained as the classifier. In this study, both train and test sets contain 50% of seizure and non-seizure segments of the EEG signal. From the CHB-MIT Scalp benchmark EEG dataset, we used the EEG data from four subjects with overall 21 hours of recording. Support Vector Machine (SVM) with linear kernel is used as the classifier. The experimental results show a delicate classification performance over the test set: i.e., an average of 90.62% sensitivity and 99.32% specificity are acquired when all channels and recordings are used to form a composite feature vector. In addition, an average of 93.78% sensitivity and a specificity of 99.05% are obtained using CMIM.
AbstractList The contemporary diagnosis of epileptic seizures is dominated by non-invasive EEG signal analysis and classification. In this paper, we propose a patient-specific seizure detection technique, which selects the optimal feature subsets and trains a dedicated classifier for each patient in order to maximize the classification performance. Our method exploits time domain, frequency domain, time-frequency domain and non-linear feature sets. Then, by using Conditional Mutual Information Maximization (CMIM) as the feature selection method the optimal feature subset is chosen over which the Support Vector Machine is trained as the classifier. In this study, both train and test sets contain 50% of seizure and non-seizure segments of the EEG signal. From the CHB-MIT Scalp benchmark EEG dataset, we used the EEG data from four subjects with overall 21 hours of recording. Support Vector Machine (SVM) with linear kernel is used as the classifier. The experimental results show a delicate classification performance over the test set: i.e., an average of 90.62% sensitivity and 99.32% specificity are acquired when all channels and recordings are used to form a composite feature vector. In addition, an average of 93.78% sensitivity and a specificity of 99.05% are obtained using CMIM.
Author Zabihi, M
Gabbouj, M
Ince, T
Kiranyaz, S
Author_xml – sequence: 1
  givenname: M
  surname: Zabihi
  fullname: Zabihi, M
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere
– sequence: 2
  givenname: S
  surname: Kiranyaz
  fullname: Kiranyaz, S
– sequence: 3
  givenname: T
  surname: Ince
  fullname: Ince, T
– sequence: 4
  givenname: M
  surname: Gabbouj
  fullname: Gabbouj, M
BookMark eNo1kMFKxDAQhgMq6K578wFyl66ZpJsmR1nqrrCgBz2XNJ2ukZqGJKL49LasXmYG_pmP4VuQcz96JOQG2BpYqe9sWHMGYiqSnZEFqFKDrqoSLskqpXfGGGipNPAr8v1sskOfixTQut5ZisENGPI0JXQ_nxFphxltdqOnztNh9MciY_ygdb2jEe0YO-ePcxQMds7kOJ2GEzXRL5ffpixHY7NpB_yHpmty0Zsh4eqvL8nrQ_2y3ReHp93j9v5QOGAyF9X0Zi8FGCW4RobKCmWrdoMl7zaqtVyB0rJsJWDZdigtaNObac9UnAnFxZLcnrgOc2NH32NEbzE1wJpZVmNDM8tqZlniF1iIYpg
ContentType Conference Proceeding
DBID 8ET
DOI 10.1049/cp.2013.2060
DatabaseName IET Conference Publications by volume
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1049_cp_2013_2060
GroupedDBID 6IE
6IK
8ET
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
ID FETCH-LOGICAL-i106t-7891f631a8329e0e8c38c7b5e42d58bc2818964b61e4bde6c19afa0e8a7203823
ISBN 1849197741
9781849197748
IngestDate Tue Jan 05 23:28:11 EST 2021
IsPeerReviewed false
IsScholarly false
Keywords linear kernel
electroencephalography
time domain
support vector machines
long term EEG recording
feature selection method
patient specific epileptic seizure detection
noninvasive EEG signal analysis
signal classification
paediatric patients
intractable seizures
medical signal processing
time frequency domain
support vector machine
conditional mutual information maximization
EEG data
patient diagnosis
composite feature vector
nonlinear feature sets
Language English
LinkModel OpenURL
MeetingName IET Intelligent Signal Processing Conference 2013 (ISP 2013), 2-3 Dec. 2013, London, UK
MergedId FETCHMERGED-LOGICAL-i106t-7891f631a8329e0e8c38c7b5e42d58bc2818964b61e4bde6c19afa0e8a7203823
ParticipantIDs iet_conferences_10_1049_cp_2013_2060
ProviderPackageCode 8ET
PublicationCentury 2000
PublicationDate 20130000
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 20130000
PublicationDecade 2010
PublicationPlace Stevenage, UK
PublicationPlace_xml – name: Stevenage, UK
PublicationTitle IET Intelligent Signal Processing Conference 2013 (ISP 2013)
PublicationYear 2013
Publisher IET
Publisher_xml – name: IET
SSID ssj0001968912
Score 1.6031578
Snippet The contemporary diagnosis of epileptic seizures is dominated by non-invasive EEG signal analysis and classification. In this paper, we propose a...
SourceID iet
SourceType Publisher
StartPage 7.P06
SubjectTerms Bioelectric signals
Electrical activity in neurophysiological processes
Electrodiagnostics and other electrical measurement techniques
Patient diagnostic methods and instrumentation
Signal processing and detection
Title Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures
URI http://digital-library.theiet.org/content/conferences/10.1049/cp.2013.2060
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZNTu2pj5S-0SE3o9QPWZbOZZu0pWUhGwi9GEmWg6E4S9aBdn99Z2xZ9m730PYijC1ko8-MRjP6viHklOeqxmwcy_JKMF6ImkmpDFOKa5WaODcCucNfv4mLK_75Or-eYro9u6QzZ3Z7kFfyP6jCPcAVWbL_gGwYFG7ANeALLSAM7Z7ze3Cd-bRYeRoISmp20WVzg76lP_s_JPRHPl8ES3DWu5OXy_46hACGsZaDvipD5iWeHorcGuzFGuVcN67ZYpqhcp2z49nIH7ftDUOzHi0W59EQ6vH0mLUey3-Mqq2eQtdgINl2PVnLDxo8-u_aNH194Sk8-6WBdfSX3u4EaMGeuZ2z3edYDe1-Vp7ZhzCwnMROCANma2dXC5tOlaBfKmeWtThb9tIEf9p82OMAUBbFR5MMmqE-wZ6Kdp9r56q06xK7ldjtiBwVMh44f1NcTgmpknRQGxg-I_HSYOGzPIECxns_fy24J43rZu7J6jE5mYCmy_CrPCEPXPuUPJppTj4jP_eRpgFp6kGhAWnatDQgTQFpGpDGRxPSdESaItJ0hvQ46OaEXH1crD5cMF9-gzVJLDpWwDzUIks0GH3lYidtJm1hcsfTKpfGoo6YEtyIxHFTOWETpWsN_TSm9mWaPSfH7W3rXhCaKm3SoqhtrjTXGViDwlVCxljbwCVV9ZKcwsyVNszVpjwE2Ku_6_aaPJz-sjfkuLu7d2_BdezMux7r347Qa_4
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IET+Intelligent+Signal+Processing+Conference+2013+%28ISP+2013%29&rft.atitle=Patient-specific+epileptic+seizure+detection+in+long-term+EEG+recording+in+paediatric+patients+with+intractable+seizures&rft.au=Zabihi%2C+M&rft.au=Kiranyaz%2C+S&rft.au=Ince%2C+T&rft.au=Gabbouj%2C+M&rft.date=2013-01-01&rft.pub=IET&rft.isbn=9781849197748&rft.spage=7.P06&rft_id=info:doi/10.1049%2Fcp.2013.2060&rft.externalDocID=10_1049_cp_2013_2060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849197748/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849197748/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849197748/sc.gif&client=summon&freeimage=true