Multi-platform multi-target tracking fusion via covariance intersection: using fuzzy optimised modified Kalman filters with measurement noise covariance estimation

Presented in this paper is a detailed novel approach to tracking multiple moving targets from multiple moving platforms and fusing the individual estimates within platform centric nodes via covariance intersection. The approach presents a method of deconstructing the target model into a nonlinear el...

Full description

Saved in:
Bibliographic Details
Published inIET Seminar on Target Tracking and Data Fusion: Algorithms and Applications pp. 185 - 194
Main Authors Wren, T.J, Mahmood, A
Format Conference Proceeding
LanguageEnglish
Published Stevenage IET 2008
Subjects
Online AccessGet full text
ISBN0863419100
9780863419102
DOI10.1049/ic:20080071

Cover

Abstract Presented in this paper is a detailed novel approach to tracking multiple moving targets from multiple moving platforms and fusing the individual estimates within platform centric nodes via covariance intersection. The approach presents a method of deconstructing the target model into a nonlinear element and a Kalman filter, modelling the target position and velocity vectors of the targets. The method avoids the increased complexity of using extended Kalman filters. The model state noise covariance is restructured by considering the source of the noise within the simplified imposed model and the measurement noise covariance is estimated from a single coefficient optimized moving average filter. The filter coefficient is optimally determined by the minimization of the variance of the Frobenius norm of the current estimated measurement covariance matrix, via a fuzzy logic feedback structure.
AbstractList Presented in this paper is a detailed novel approach to tracking multiple moving targets from multiple moving platforms and fusing the individual estimates within platform centric nodes via covariance intersection. The approach presents a method of deconstructing the target model into a nonlinear element and a Kalman filter, modelling the target position and velocity vectors of the targets. The method avoids the increased complexity of using extended Kalman filters. The model state noise covariance is restructured by considering the source of the noise within the simplified imposed model and the measurement noise covariance is estimated from a single coefficient optimized moving average filter. The filter coefficient is optimally determined by the minimization of the variance of the Frobenius norm of the current estimated measurement covariance matrix, via a fuzzy logic feedback structure.
Author Mahmood, A
Wren, T.J
Author_xml – sequence: 1
  givenname: T.J
  surname: Wren
  fullname: Wren, T.J
  organization: Gen. Dynamics United Kingdom Ltd., St. Leonards on Sea
– sequence: 2
  givenname: A
  surname: Mahmood
  fullname: Mahmood, A
BookMark eNpNkMtOAzEMRSMBElC64geyRhpwmnl2hypeoogNrEcm4xTDTFJN0iL6O_wo0wIS3thXvj6y7rHYd96REKcKzhWk1QWb6QSgBCjUnjiGMtepqhTAoRiH8AZDlZOi1PpIfD2s2sjJssVofd_Jbicj9guKMvZo3tktpF0F9k6uGaXxa-wZnSHJLlIfyMRhN5WDZefcbD6lX0buOFAjO9-w5WG4x7ZDJy232yP5wfFVdoRh1VNHLkrnB_9_OoWBgVv2iTiw2AYa__aReL6-eprdJvPHm7vZ5TxhBVlMqAHdFGStojQzVVWYl8JoymxZYWopywlTrWiiM8gxb8BWVmeIlKeKNKaVHomzHy5TrI13lnoaPgm1gnoba82m_otVfwPDQHSX
ContentType Conference Proceeding
DBID 8ET
DOI 10.1049/ic:20080071
DatabaseName IET Conference Publications by volume
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 194
ExternalDocumentID 10_1049_ic_20080071
GroupedDBID 6IE
6IK
8ET
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
ID FETCH-LOGICAL-i105t-ed03d7eff1e45c997cb7c3e5f89a4fe56ea431e23506a6d0f9f35aae641e3a493
ISBN 0863419100
9780863419102
IngestDate Tue Jan 05 23:28:46 EST 2021
IsPeerReviewed false
IsScholarly false
Keywords fuzzy logic feedback structure
covariance matrices
fuzzy set theory
Frobenius norm
multiple moving target tracking
feedback
multi-platform multi-target tracking fusion
platform centric nodes
target tracking
measurement noise covariance estimation
measurement covariance matrix
covariance intersection
fuzzy optimised modified Kalman filters
Kalman filters
Language English
LinkModel OpenURL
MeetingName IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications, 15-16 April 2008, Birmingham, UK
MergedId FETCHMERGED-LOGICAL-i105t-ed03d7eff1e45c997cb7c3e5f89a4fe56ea431e23506a6d0f9f35aae641e3a493
PageCount 10
ParticipantIDs iet_conferences_10_1049_ic_20080071
ProviderPackageCode 8ET
PublicationCentury 2000
PublicationDate 20080000
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 20080000
PublicationDecade 2000
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications
PublicationYear 2008
Publisher IET
Publisher_xml – name: IET
SSID ssj0000827833
Score 1.3957531
Snippet Presented in this paper is a detailed novel approach to tracking multiple moving targets from multiple moving platforms and fusing the individual estimates...
SourceID iet
SourceType Publisher
StartPage 185
SubjectTerms Algebra
Combinatorial mathematics
Digital signal processing
Filtering methods in signal processing
Title Multi-platform multi-target tracking fusion via covariance intersection: using fuzzy optimised modified Kalman filters with measurement noise covariance estimation
URI http://digital-library.theiet.org/content/conferences/10.1049/ic_20080071
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMetbU_cQBTxliW4RSlJnJd7W0GrAgJxSEVvK9uxqcVmU2WzldjPwTfgizK289plD8AlWkXWJPLP6_w9nhkj9LpMMyF4LPwsUsqPudkkDDj3ZUIU5yKnqQ2i-fQ5vbyKP1wn17PZz0nU0qblp2J7MK_kf6jCPeBqsmT_gexgFG7Ab-ALVyAM1z3xe_A78_68gP-6iWVpjM-_sEHdply5-N6nHr5jLfMuNusugmO-_FY3ur2pXGXm-WT3ejp2bFauf7tkrZG0LujQdzHj5kwJZ15Zq96dZp6o72DJbZMPTPmJZm3ju-wTN2vXdrv94dUwPcGwAolb1aVWRvx-ZEuziaC02bTvMu2q0W3prWpt4-kH-6YoSLUTPfC1cTNncTq6vNlN1YUSzXfcGvmeWwN6cGelCysvU3kuDKLJbBu60366D3foTkv-45sAayAAqc3giKxAdme-7JXZtpvxMV1osehbHaEjeLDLCRz8diCZspwQW0q0e6WudNj4il0eKJh7o8VZbw7Ui5btRL0U99HJmNeJvwwj6QGaydVD9GuXNp7Sxj1t7GhjoI1HGnhK-wxb1tiyxgNr3LPGjjXuWGPDGk9YY8t6an1kfYKuLs6Lt5d-d3SHr0Gwt74sA1JmUqlQxomgNBM8E0QmKqcsVjJJJQPlKiOSBClLy0BRRRLGZBqHkrCYkkfoeFWv5GOEeRnRXOZSgRYFtQ9LgqzMSEzKNJAiF_QJegXduhBDR64XB1g-_atWz9C9cSw-R8dts5EvQHS2_KUdBb8Bm2qKYQ
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IET+Seminar+on+Target+Tracking+and+Data+Fusion%3A+Algorithms+and+Applications&rft.atitle=Multi-platform+multi-target+tracking+fusion+via+covariance+intersection%3A+using+fuzzy+optimised+modified+Kalman+filters+with+measurement+noise+covariance+estimation&rft.au=Wren%2C+T.J&rft.au=Mahmood%2C+A&rft.date=2008-01-01&rft.pub=IET&rft.isbn=9780863419102&rft.spage=185&rft.epage=194&rft_id=info:doi/10.1049%2Fic%3A20080071&rft.externalDocID=10_1049_ic_20080071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780863419102/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780863419102/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780863419102/sc.gif&client=summon&freeimage=true