ANN and GA-Based Process Parameter Optimization for MIMO Plastic Injection Molding

Determining optimal initial process parameter settings critically influences productivity, quality, and costs of production in the plastic injection molding (PIM) industry. Up to now, most production engineers have either used trial-and-error or Taguchi's parameter design method to determine in...

Full description

Saved in:
Bibliographic Details
Published in2007 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 1909 - 1917
Main Authors Wen-Chin Chen, Gong-Loung Fu, Pei-Hao Tai, Wei-Jaw Deng, Yang-Chih Fan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2007
Subjects
Online AccessGet full text
ISBN1424409721
9781424409723
ISSN2160-133X
DOI10.1109/ICMLC.2007.4370460

Cover

Abstract Determining optimal initial process parameter settings critically influences productivity, quality, and costs of production in the plastic injection molding (PIM) industry. Up to now, most production engineers have either used trial-and-error or Taguchi's parameter design method to determine initial settings for a number of parameters, including melt temperature, injection pressure, injection velocity, injection time, packing pressure, packing time, cooling temperature, and cooling time. But due to the increasing complexity of product design and multi-response quality characteristics, these multiple input-multiple output (MIMO) methods have some definite shortcomings. This research integrates Taguchi's parameter design methods with back-propagation neural networks, genetic algorithms, and engineering optimization concepts, to optimize the initial process settings of plastic injection molding equipment. The research results indicate that the proposed approach can effectively help engineers determine optimal initial process settings, reduce set-test iterations, and achieve competitive advantages on product quality and costs.
AbstractList Determining optimal initial process parameter settings critically influences productivity, quality, and costs of production in the plastic injection molding (PIM) industry. Up to now, most production engineers have either used trial-and-error or Taguchi's parameter design method to determine initial settings for a number of parameters, including melt temperature, injection pressure, injection velocity, injection time, packing pressure, packing time, cooling temperature, and cooling time. But due to the increasing complexity of product design and multi-response quality characteristics, these multiple input-multiple output (MIMO) methods have some definite shortcomings. This research integrates Taguchi's parameter design methods with back-propagation neural networks, genetic algorithms, and engineering optimization concepts, to optimize the initial process settings of plastic injection molding equipment. The research results indicate that the proposed approach can effectively help engineers determine optimal initial process settings, reduce set-test iterations, and achieve competitive advantages on product quality and costs.
Author Yang-Chih Fan
Wen-Chin Chen
Pei-Hao Tai
Wei-Jaw Deng
Gong-Loung Fu
Author_xml – sequence: 1
  surname: Wen-Chin Chen
  fullname: Wen-Chin Chen
  organization: Chung Hua Univ., Hsinchu
– sequence: 2
  surname: Gong-Loung Fu
  fullname: Gong-Loung Fu
– sequence: 3
  surname: Pei-Hao Tai
  fullname: Pei-Hao Tai
– sequence: 4
  surname: Wei-Jaw Deng
  fullname: Wei-Jaw Deng
– sequence: 5
  surname: Yang-Chih Fan
  fullname: Yang-Chih Fan
BookMark eNo1kNFKwzAYhSNOcJt7Ab3JC3T-f5I27WUtbhbabYiCdyNNUslY25H0Rp_eofPq8HHgg3NmZNIPvSXkHmGJCNljWdRVsWQAcim4BJHAFVlkMkXBhIBMcrgms39gOCFThglEyPnHLVmEcAAAlIkAxqfkNd9sqOoNXefRkwrW0J0ftA2B7pRXnR2tp9vT6Dr3rUY39LQdPK3Lekt3RxVGp2nZH6z-rerhaFz_eUduWnUMdnHJOXlfPb8VL1G1XZdFXkUOIR4jzYROILMgheBtkyhpTMNjjSgAGxGjBI2xViqLLTfpeV4MaWtS1ogzspbPycOf11lr9yfvOuW_9pdL-A90iFLX
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2007.4370460
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424409730
142440973X
EndPage 1917
ExternalDocumentID 4370460
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i105t-c24c609e07443fb6a7ddb35c11401b45170c15caa95e3d8814508fd82b43d82f3
IEDL.DBID RIE
ISBN 1424409721
9781424409723
ISSN 2160-133X
IngestDate Wed Aug 27 02:10:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-c24c609e07443fb6a7ddb35c11401b45170c15caa95e3d8814508fd82b43d82f3
PageCount 9
ParticipantIDs ieee_primary_4370460
PublicationCentury 2000
PublicationDate 2007-Aug.
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-Aug.
PublicationDecade 2000
PublicationTitle 2007 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001764023
ssj0000744891
Score 1.3989633
Snippet Determining optimal initial process parameter settings critically influences productivity, quality, and costs of production in the plastic injection molding...
SourceID ieee
SourceType Publisher
StartPage 1909
SubjectTerms Back-propagation neural networks
Cooling
Cost function
Design engineering
Design methodology
Design optimization
Genetic algorithms
Injection molding
MIMO
Plastic injection molding
Plastics
Production
Taguchi's parameter design
Temperature
Title ANN and GA-Based Process Parameter Optimization for MIMO Plastic Injection Molding
URI https://ieeexplore.ieee.org/document/4370460
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx5daNlud_eIRARjgRhJuJHuK1FjMaZc_PXO9oHRePDWbZq0nUw73zy-bxG6klpJ6bQhgilIUKRjRHKtSMQBHCgWWGF9opjM4skyul-xVQNd77gw1tpi-Mz2_GHRyzcbvfWlsn5Eue_jNVGTi7jkau3qKRAKI1HpvhT1FR5DauQbzIMwDgikYqua11Uo1tRyT9Wa1oSaQPano-RhVKobVnf8sfVKEXnGbZTUz1wOnLz2trnq6c9fco7_fal91P3m-OHFLnodoIbNDlG73uQBV998Bz0OZzOcZgbfDckNhDyDK24BXqR-sMtfPIf_zltF6MSAgnEyTeZ4AcAc3BJPs5di3ivDSdnq6qLl-PZpNCHVRgzkGeBXTvQg0nEgrbcxdSpOuTGKMh367ExFLOSBDplOU8ksNQKsCrDPGTFQESwHjh6hVrbJ7DHCRloaO2FjkUrwDC4kC5yTjLuQQupiT1DHm2j9XmptrCvrnP59-gztlbVWP5B3jlr5x9ZeAEjI1WXhHV8CzrIl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_BooaW73e4RiUqVFmIg4Ua6r0SNxZhy8dc72wdG48Fbt2nSdjLtfPP4vkXoikvBuZHKCamABIUb6nAmhUMYgANBXR1qmyjGSTCak4cFXTTQ9YYLo7Uuhs901x4WvXy1kmtbKusRn9k-3hbapoQQWrK1NhUVCIYkrJRfigoLCyA5si3mvhe4DiRji5rZVWjW1IJP1dqvKTUu70XDeDws9Q2re_7YfKWIPXctFNdPXY6cvHbXuejKz1-Cjv99rT3U-Wb54ekmfu2jhs4OUKve5gFXX30bPQ2SBKeZwvcD5waCnsIVuwBPUzvaZS-ewJ_nraJ0YsDBOI7iCZ4CNAfHxFH2Ukx8ZTgum10dNL-7nQ1HTrUVg_MMACx3ZJ_IwOXa2tg3IkiZUsKn0rP5mSDUY670qExTTrWvQrAqAD-jwr4gsOwb_xA1s1WmjxBWXPuBCXUQphx8g4WcusZwyoznQ_Kij1Hbmmj5XqptLCvrnPx9-hLtjGbxeDmOksdTtFtWXu143hlq5h9rfQ6QIRcXhad8AZBCtXI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=ANN+and+GA-Based+Process+Parameter+Optimization+for+MIMO+Plastic+Injection+Molding&rft.au=Wen-Chin+Chen&rft.au=Gong-Loung+Fu&rft.au=Pei-Hao+Tai&rft.au=Wei-Jaw+Deng&rft.date=2007-08-01&rft.pub=IEEE&rft.isbn=9781424409723&rft.issn=2160-133X&rft.volume=4&rft.spage=1909&rft.epage=1917&rft_id=info:doi/10.1109%2FICMLC.2007.4370460&rft.externalDocID=4370460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon