ANN and GA-Based Process Parameter Optimization for MIMO Plastic Injection Molding
Determining optimal initial process parameter settings critically influences productivity, quality, and costs of production in the plastic injection molding (PIM) industry. Up to now, most production engineers have either used trial-and-error or Taguchi's parameter design method to determine in...
Saved in:
| Published in | 2007 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 1909 - 1917 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.08.2007
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1424409721 9781424409723 |
| ISSN | 2160-133X |
| DOI | 10.1109/ICMLC.2007.4370460 |
Cover
| Abstract | Determining optimal initial process parameter settings critically influences productivity, quality, and costs of production in the plastic injection molding (PIM) industry. Up to now, most production engineers have either used trial-and-error or Taguchi's parameter design method to determine initial settings for a number of parameters, including melt temperature, injection pressure, injection velocity, injection time, packing pressure, packing time, cooling temperature, and cooling time. But due to the increasing complexity of product design and multi-response quality characteristics, these multiple input-multiple output (MIMO) methods have some definite shortcomings. This research integrates Taguchi's parameter design methods with back-propagation neural networks, genetic algorithms, and engineering optimization concepts, to optimize the initial process settings of plastic injection molding equipment. The research results indicate that the proposed approach can effectively help engineers determine optimal initial process settings, reduce set-test iterations, and achieve competitive advantages on product quality and costs. |
|---|---|
| AbstractList | Determining optimal initial process parameter settings critically influences productivity, quality, and costs of production in the plastic injection molding (PIM) industry. Up to now, most production engineers have either used trial-and-error or Taguchi's parameter design method to determine initial settings for a number of parameters, including melt temperature, injection pressure, injection velocity, injection time, packing pressure, packing time, cooling temperature, and cooling time. But due to the increasing complexity of product design and multi-response quality characteristics, these multiple input-multiple output (MIMO) methods have some definite shortcomings. This research integrates Taguchi's parameter design methods with back-propagation neural networks, genetic algorithms, and engineering optimization concepts, to optimize the initial process settings of plastic injection molding equipment. The research results indicate that the proposed approach can effectively help engineers determine optimal initial process settings, reduce set-test iterations, and achieve competitive advantages on product quality and costs. |
| Author | Yang-Chih Fan Wen-Chin Chen Pei-Hao Tai Wei-Jaw Deng Gong-Loung Fu |
| Author_xml | – sequence: 1 surname: Wen-Chin Chen fullname: Wen-Chin Chen organization: Chung Hua Univ., Hsinchu – sequence: 2 surname: Gong-Loung Fu fullname: Gong-Loung Fu – sequence: 3 surname: Pei-Hao Tai fullname: Pei-Hao Tai – sequence: 4 surname: Wei-Jaw Deng fullname: Wei-Jaw Deng – sequence: 5 surname: Yang-Chih Fan fullname: Yang-Chih Fan |
| BookMark | eNo1kNFKwzAYhSNOcJt7Ab3JC3T-f5I27WUtbhbabYiCdyNNUslY25H0Rp_eofPq8HHgg3NmZNIPvSXkHmGJCNljWdRVsWQAcim4BJHAFVlkMkXBhIBMcrgms39gOCFThglEyPnHLVmEcAAAlIkAxqfkNd9sqOoNXefRkwrW0J0ftA2B7pRXnR2tp9vT6Dr3rUY39LQdPK3Lekt3RxVGp2nZH6z-rerhaFz_eUduWnUMdnHJOXlfPb8VL1G1XZdFXkUOIR4jzYROILMgheBtkyhpTMNjjSgAGxGjBI2xViqLLTfpeV4MaWtS1ogzspbPycOf11lr9yfvOuW_9pdL-A90iFLX |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLC.2007.4370460 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781424409730 142440973X |
| EndPage | 1917 |
| ExternalDocumentID | 4370460 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IG 6IH 6IK 6IL 6IM 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i105t-c24c609e07443fb6a7ddb35c11401b45170c15caa95e3d8814508fd82b43d82f3 |
| IEDL.DBID | RIE |
| ISBN | 1424409721 9781424409723 |
| ISSN | 2160-133X |
| IngestDate | Wed Aug 27 02:10:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i105t-c24c609e07443fb6a7ddb35c11401b45170c15caa95e3d8814508fd82b43d82f3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_4370460 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-Aug. |
| PublicationDateYYYYMMDD | 2007-08-01 |
| PublicationDate_xml | – month: 08 year: 2007 text: 2007-Aug. |
| PublicationDecade | 2000 |
| PublicationTitle | 2007 International Conference on Machine Learning and Cybernetics |
| PublicationTitleAbbrev | ICMLC |
| PublicationYear | 2007 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001764023 ssj0000744891 |
| Score | 1.3989633 |
| Snippet | Determining optimal initial process parameter settings critically influences productivity, quality, and costs of production in the plastic injection molding... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1909 |
| SubjectTerms | Back-propagation neural networks Cooling Cost function Design engineering Design methodology Design optimization Genetic algorithms Injection molding MIMO Plastic injection molding Plastics Production Taguchi's parameter design Temperature |
| Title | ANN and GA-Based Process Parameter Optimization for MIMO Plastic Injection Molding |
| URI | https://ieeexplore.ieee.org/document/4370460 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx5daNlud_eIRARjgRhJuJHuK1FjMaZc_PXO9oHRePDWbZq0nUw73zy-bxG6klpJ6bQhgilIUKRjRHKtSMQBHCgWWGF9opjM4skyul-xVQNd77gw1tpi-Mz2_GHRyzcbvfWlsn5Eue_jNVGTi7jkau3qKRAKI1HpvhT1FR5DauQbzIMwDgikYqua11Uo1tRyT9Wa1oSaQPano-RhVKobVnf8sfVKEXnGbZTUz1wOnLz2trnq6c9fco7_fal91P3m-OHFLnodoIbNDlG73uQBV998Bz0OZzOcZgbfDckNhDyDK24BXqR-sMtfPIf_zltF6MSAgnEyTeZ4AcAc3BJPs5di3ivDSdnq6qLl-PZpNCHVRgzkGeBXTvQg0nEgrbcxdSpOuTGKMh367ExFLOSBDplOU8ksNQKsCrDPGTFQESwHjh6hVrbJ7DHCRloaO2FjkUrwDC4kC5yTjLuQQupiT1DHm2j9XmptrCvrnP59-gztlbVWP5B3jlr5x9ZeAEjI1WXhHV8CzrIl |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_BooaW73e4RiUqVFmIg4Ua6r0SNxZhy8dc72wdG48Fbt2nSdjLtfPP4vkXoikvBuZHKCamABIUb6nAmhUMYgANBXR1qmyjGSTCak4cFXTTQ9YYLo7Uuhs901x4WvXy1kmtbKusRn9k-3hbapoQQWrK1NhUVCIYkrJRfigoLCyA5si3mvhe4DiRji5rZVWjW1IJP1dqvKTUu70XDeDws9Q2re_7YfKWIPXctFNdPXY6cvHbXuejKz1-Cjv99rT3U-Wb54ekmfu2jhs4OUKve5gFXX30bPQ2SBKeZwvcD5waCnsIVuwBPUzvaZS-ewJ_nraJ0YsDBOI7iCZ4CNAfHxFH2Ukx8ZTgum10dNL-7nQ1HTrUVg_MMACx3ZJ_IwOXa2tg3IkiZUsKn0rP5mSDUY670qExTTrWvQrAqAD-jwr4gsOwb_xA1s1WmjxBWXPuBCXUQphx8g4WcusZwyoznQ_Kij1Hbmmj5XqptLCvrnPx9-hLtjGbxeDmOksdTtFtWXu143hlq5h9rfQ6QIRcXhad8AZBCtXI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=ANN+and+GA-Based+Process+Parameter+Optimization+for+MIMO+Plastic+Injection+Molding&rft.au=Wen-Chin+Chen&rft.au=Gong-Loung+Fu&rft.au=Pei-Hao+Tai&rft.au=Wei-Jaw+Deng&rft.date=2007-08-01&rft.pub=IEEE&rft.isbn=9781424409723&rft.issn=2160-133X&rft.volume=4&rft.spage=1909&rft.epage=1917&rft_id=info:doi/10.1109%2FICMLC.2007.4370460&rft.externalDocID=4370460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |