Multispectral Landsat image classification using a data clustering algorithm

This work presents a new application of a data-clustering algorithm in Landsat image classification, which improves on conventional classification methods. Neural networks have been widely used in Landsat image classification because they are unbiased by data distribution. However, they need long tr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of 2004 International Conference on Machine Learning and Cybernetics : August 6-29, 2004, Worldfield Convention Hotel, Shanghai, China Vol. 7; pp. 4380 - 4384 vol.7
Main Authors Yan Wang, Mo Jamshidi, Neville, P., Bales, C., Morain, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2004
Subjects
Online AccessGet full text
ISBN0780384032
9780780384033
DOI10.1109/ICMLC.2004.1384607

Cover

Abstract This work presents a new application of a data-clustering algorithm in Landsat image classification, which improves on conventional classification methods. Neural networks have been widely used in Landsat image classification because they are unbiased by data distribution. However, they need long training times for the network to get satisfactory classification accuracy. The data-clustering algorithm is based on fuzzy inferences using radial basis functions and clustering in input space. It only passes training data once so it has a short training tune. It can also generate fuzzy classification, which is appropriate in the case of mixed, intermediate or complex cover pattern pixels. This algorithm is applied in the land cover classification of Landsat 7 ETM+ over the Rio Rancho area, New Mexico. It is compared with back-propagation neural network (BPNN) to illustrate its effectiveness and concluded that it can get a better classification using shorter training time.
AbstractList This work presents a new application of a data-clustering algorithm in Landsat image classification, which improves on conventional classification methods. Neural networks have been widely used in Landsat image classification because they are unbiased by data distribution. However, they need long training times for the network to get satisfactory classification accuracy. The data-clustering algorithm is based on fuzzy inferences using radial basis functions and clustering in input space. It only passes training data once so it has a short training tune. It can also generate fuzzy classification, which is appropriate in the case of mixed, intermediate or complex cover pattern pixels. This algorithm is applied in the land cover classification of Landsat 7 ETM+ over the Rio Rancho area, New Mexico. It is compared with back-propagation neural network (BPNN) to illustrate its effectiveness and concluded that it can get a better classification using shorter training time.
Author Bales, C.
Morain, S.
Mo Jamshidi
Neville, P.
Yan Wang
Author_xml – sequence: 1
  surname: Yan Wang
  fullname: Yan Wang
  organization: Dept. of Electr. & Comput. Eng., New Mexico Univ., Albuquerque, NM, USA
– sequence: 2
  surname: Mo Jamshidi
  fullname: Mo Jamshidi
  organization: Dept. of Electr. & Comput. Eng., New Mexico Univ., Albuquerque, NM, USA
– sequence: 3
  givenname: P.
  surname: Neville
  fullname: Neville, P.
– sequence: 4
  givenname: C.
  surname: Bales
  fullname: Bales, C.
– sequence: 5
  givenname: S.
  surname: Morain
  fullname: Morain, S.
BookMark eNotT8FOwzAUiwRIsLEfgEt-oOO9JmmbI6qATerEBc7TS5qUoK6dmvTA31PBfLFsS5a9YtfDODjGHhC2iKCf9vWhqbc5gNyiqGQB5RVbQVnBIkDkt2wT4zcsEFoVub5jzWHuU4hnZ9NEPW9oaCMlHk7UOW57ijH4YCmFceBzDEPHibeUaMnmmNz05_TdOIX0dbpnN5766DYXXrPP15ePepc172_7-rnJAoJKGYEzVqFED9K1udRINhdCWzTKW2WwwEpJZdEZJwkUGV8alG2ri5IKL8SaPf73Bufc8Twta6ef4-Ww-AWkRk8k
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2004.1384607
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
Institute of Electrical and Electronics Engineers Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 4384 vol.7
ExternalDocumentID 1384607
Genre orig-research
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i105t-a0ebc5141f04ed2491ac2339c1b5fc5b1618545c1ebe4a05abf7b14dd967a6f33
IEDL.DBID RIE
ISBN 0780384032
9780780384033
IngestDate Tue Aug 26 18:21:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-a0ebc5141f04ed2491ac2339c1b5fc5b1618545c1ebe4a05abf7b14dd967a6f33
ParticipantIDs ieee_primary_1384607
PublicationCentury 2000
PublicationDate 20040000
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 20040000
PublicationDecade 2000
PublicationTitle Proceedings of 2004 International Conference on Machine Learning and Cybernetics : August 6-29, 2004, Worldfield Convention Hotel, Shanghai, China
PublicationTitleAbbrev ICMLC
PublicationYear 2004
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395629
Score 1.3356997
Snippet This work presents a new application of a data-clustering algorithm in Landsat image classification, which improves on conventional classification methods....
SourceID ieee
SourceType Publisher
StartPage 4380
SubjectTerms Clustering algorithms
Content addressable storage
Gaussian distribution
Humans
Image classification
Indexing
Neural networks
Remote sensing
Satellites
Self organizing feature maps
Title Multispectral Landsat image classification using a data clustering algorithm
URI https://ieeexplore.ieee.org/document/1384607
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4wktWM7qecKVFCLGKjUrfIrpaIPVCULv56zkxSBGNgSJ4osn-L77nzfdwjdCu6sFUxEuaRJxEXGIg2bYiQ0A2eZK0uCEtPkOR1N-dNMzFrobs-Fcc6F4jMX-8twlm-3pvSpsj5l4C09dfwgG6QVV2ufTyEMkH4iQ2Q-IPAiYUktsNPcs4Y0Q2T_cTgZD0N4GNdf_dFeJXiXhw6aNPOqikre47LQsfn8Jdn434kfod43jw-_7D3UMWq5zQnqNI0ccP1fd9E40HAD6XKnVnjs6b-qwMs1bDbYeHztC4qCDbEvlF9ghX1pKTwrvdBCGFkttrtl8bbuoenD_etwFNVtFqIlgKsiUsRpA7iJ5gQMB-EYVSZhTBqqRW6E9pL6gLMMBXtzRYTSeaYpt1ammUpzxk5Re7PduDOErZTGerZuqi2X3GqIdxTxbCALMDMl56jrF2f-USlpzOt1ufh7-BIdVnUyPuFxhdrFrnTXAAEKfRNs_wVg_qy0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsBUoEW88cBIUie2UzJXVC0kFUMrdav8SqnoA1XJwq_n7CRFIAa2xIkiy5f4vrt83x1C95wZrTnlXhYHocd4j3oSNkWPSwrOMhOauEpM6TgaTtnzjM8a6GGvhTHGOPKZ8e2h-5evt6qwqbJuQMFbWun4AWeM8VKttc-oEApYP4xdbP5I4FZCw6rETn1Oa9kMibujfpr0XYDoV8_90WDF-ZdBC6X1zEpaybtf5NJXn7-KNv536seo863kw697H3WCGmZzilp1KwdcfdltlDghrpNd7sQKJ1YALHK8XMN2g5VF2JZS5KyILVV-gQW25FK4VthSC25ktdjulvnbuoOmg6dJf-hVjRa8JcCr3BPESAXIKcgImA4CskCokNJYBZJniktbVB-QlgrA4kwQLmTWkwHTOo56IsooPUPNzXZjzhHWcay01etGUrOYaQkRjyBWD6QBaEbkArXt4sw_yloa82pdLv8evkOHw0mazJPR-OUKHZWsGZv-uEbNfFeYGwAEubx178EXny6wAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+2004+International+Conference+on+Machine+Learning+and+Cybernetics+%3A+August+6-29%2C+2004%2C+Worldfield+Convention+Hotel%2C+Shanghai%2C+China&rft.atitle=Multispectral+Landsat+image+classification+using+a+data+clustering+algorithm&rft.au=Yan+Wang&rft.au=Mo+Jamshidi&rft.au=Neville%2C+P.&rft.au=Bales%2C+C.&rft.date=2004-01-01&rft.pub=IEEE&rft.isbn=9780780384033&rft.volume=7&rft.spage=4380&rft.epage=4384+vol.7&rft_id=info:doi/10.1109%2FICMLC.2004.1384607&rft.externalDocID=1384607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780384033/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780384033/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780384033/sc.gif&client=summon&freeimage=true