Federated Adaptive Kalman Filtering and its application

In order to deal with the problem in which the Federated Kalman Filtering (FKF) may be instable or divergent when noise statistics is unknown, a new federated filtering is presented, which is defined as Federated Adaptive Kalman Filtering (FAKF). A factor of modified the measurement noise covariance...

Full description

Saved in:
Bibliographic Details
Published in2008 7th World Congress on Intelligent Control and Automation pp. 1369 - 1372
Main Author Long Zhao
Format Conference Proceeding
LanguageChinese
English
Published IEEE 01.06.2008
Subjects
Online AccessGet full text
ISBN1424421136
9781424421138
DOI10.1109/WCICA.2008.4593122

Cover

Abstract In order to deal with the problem in which the Federated Kalman Filtering (FKF) may be instable or divergent when noise statistics is unknown, a new federated filtering is presented, which is defined as Federated Adaptive Kalman Filtering (FAKF). A factor of modified the measurement noise covariance was built by using the ratio between filter residual and actual residual in FAKF. The adaptive estimation of FKF was realized by online modifying the measurement noise covariance. FAKF and FKF were compared using practical measuring data in inertial navigation system/global positioning system/double-star system (INS/GPS/DS) integrated navigation system. Simulation results show that FAKF has adaptability and has better estimation accuracy than the FKF when noise statistics information is unknown.
AbstractList In order to deal with the problem in which the Federated Kalman Filtering (FKF) may be instable or divergent when noise statistics is unknown, a new federated filtering is presented, which is defined as Federated Adaptive Kalman Filtering (FAKF). A factor of modified the measurement noise covariance was built by using the ratio between filter residual and actual residual in FAKF. The adaptive estimation of FKF was realized by online modifying the measurement noise covariance. FAKF and FKF were compared using practical measuring data in inertial navigation system/global positioning system/double-star system (INS/GPS/DS) integrated navigation system. Simulation results show that FAKF has adaptability and has better estimation accuracy than the FKF when noise statistics information is unknown.
Author Long Zhao
Author_xml – sequence: 1
  surname: Long Zhao
  fullname: Long Zhao
  organization: Sch. of Autom. Sci. & Electr. Eng., Beijing Univ. of Aeronaut. & Astronaut., Beijing
BookMark eNpFj99KwzAYxSM60M69gN7kBVqTL_-ay1GsioPdTLwcafJVIl1W2iD49k4ceG4OB34czinIVTomJOSOs4pzZh_em5dmXQFjdSWVFRzgghRcgpTAuZSX_0HoBSl-QcuYNuyarOb5k50kldBW3xDTYsDJZQx0HdyY4xfSVzccXKJtHDJOMX1QlwKNeaZuHIfoXY7HdEsWvRtmXJ19Sd7ax13zXG62T6dxmzJypnKpg4BaIwJ48KoX3hrvDdTQOel79MYrRBtC4OAECtBdCL22hiPDTvVKLMn9X29ExP04xYObvvfn1-IHccpLWg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCICA.2008.4593122
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424421144
9781424421145
EndPage 1372
ExternalDocumentID 4593122
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i105t-6d3286ee22c2c5f3c97cc7282ba4cfec7c5ee9ddd12a3e326bddf6971e0eb5f53
IEDL.DBID RIE
ISBN 1424421136
9781424421138
IngestDate Wed Aug 27 02:26:43 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008900670
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-6d3286ee22c2c5f3c97cc7282ba4cfec7c5ee9ddd12a3e326bddf6971e0eb5f53
PageCount 4
ParticipantIDs ieee_primary_4593122
PublicationCentury 2000
PublicationDate 2008-June
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-June
PublicationDecade 2000
PublicationTitle 2008 7th World Congress on Intelligent Control and Automation
PublicationTitleAbbrev WCICA
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453696
Score 1.4302262
Snippet In order to deal with the problem in which the Federated Kalman Filtering (FKF) may be instable or divergent when noise statistics is unknown, a new federated...
SourceID ieee
SourceType Publisher
StartPage 1369
SubjectTerms adaptive filtering
federated filtering
Filtering
Global positioning system
integrated navigation system
Kalman filters
Navigation
Nickel
Noise
Satellite navigation systems
satellite positioning system
Title Federated Adaptive Kalman Filtering and its application
URI https://ieeexplore.ieee.org/document/4593122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB49u281zcyzFpSoVDxZ7K9lkAkXdFt29-OtN9lEfePCWhBASAjPfPL4ZhC4dizOhLHjpR1nEYgORpk5F3gBSTEsCtIrgz-7FdM5uF3zRQVdbLgwAVMlnMAjDKpZv16YMrrIh44rGxAvcHZmImqu19ad4aBJa07XcLRJ6lbQlnZp50pJmRmr4NLmZjOtUyubUH-1VKu2S7qFZe686qeR5UBbZwHz8Ktn434vvo_4Xjw8_bDXUAepA3kMyDfUjPMS0eGz1Jog7fKdfXnWO01WInfutWOcWr4p3_C2-3Ufz9PpxMo2a9gnRyoOmIhKWkkQAEGKI4Y4aJY2R3sTKNDMOjDQcQFlrY6IpeBiXWeuEkjGMIOOO00PUzdc5HCHMvZEiEmnAOMW8EZRQy60A59HKyGSMHqNeePRyU1fIWDbvPfl7-RTt1lkXwZdxhrrFWwnnXrUX2UX1p5_Xc58E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLaqMsAEqEXceGAkbeMjiceqImrpIYZWdKsc-1mqgLSCZOHXY-cohxjYbMuybFl673vH9x5Ct4b5SSA0WOlHmcd8BZ6kRnjWABJMhgRoEcGfzoLhgj0s-bKB7nZcGAAoks-g44ZFLF9vVO5cZV3GBfWJFbh7nDHGS7bWzqNiwYlrTlezt4jrVlIXdarmUU2b6Ynu02A06JfJlNW5PxqsFPolPkTT-mZlWslzJ8-Sjvr4VbTxv1c_Qu0vJh9-3OmoY9SAtIXC2FWQsCBT476WWyfw8Fi-vMoUx2sXPbdbsUw1Xmfv-FuEu40W8f18MPSqBgre2sKmzAs0JVEAQIgiihuqRKhUaI2sRDJlQIWKAwittU8kBQvkEq1NIEIfepBww-kJaqabFE4R5tZMCaJQgTKCWTMooprrAIzFKz2VMHqGWu7Rq21ZI2NVvff87-UbtD-cTyeryWg2vkAHZQ6G82xcomb2lsOVVfRZcl387ydh6aJR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+7th+World+Congress+on+Intelligent+Control+and+Automation&rft.atitle=Federated+Adaptive+Kalman+Filtering+and+its+application&rft.au=Long+Zhao&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424421138&rft.spage=1369&rft.epage=1372&rft_id=info:doi/10.1109%2FWCICA.2008.4593122&rft.externalDocID=4593122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424421138/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424421138/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424421138/sc.gif&client=summon&freeimage=true