Obstacle avoidance with multi-objective optimization by PSO in dynamic environment
The second order motion model is one of the fundamental questions, a mostly important object in motion planning research of mobile robots, especially in complex environment. Based on the research of the second order motion model, this paper puts forward a new method for adjusting robots to avoid obs...
Saved in:
| Published in | 2005 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2950 - 2956 Vol. 5 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
2005
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 0780390911 9780780390911 |
| ISSN | 2160-133X |
| DOI | 10.1109/ICMLC.2005.1527447 |
Cover
| Abstract | The second order motion model is one of the fundamental questions, a mostly important object in motion planning research of mobile robots, especially in complex environment. Based on the research of the second order motion model, this paper puts forward a new method for adjusting robots to avoid obstacles in dynamic environment. A mathematical model is first established in which environmental information such as, destination of a mobile robot, velocity and direction of obstacles are considered. Secondly, a new particle swarm optimization (PSO) algorithm is used to search for solution of the multi-objective optimization problem as described in the mathematical model. Finally, by adjusting the velocity and direction of the mobile robot to avoid obstacles in real time, the robot can reach the goal safely. Simulation experiment shows that this method is better than tradition artificial potential field (APF) algorithm and its improved algorithm based on genetic algorithm for obstacle avoidance. |
|---|---|
| AbstractList | The second order motion model is one of the fundamental questions, a mostly important object in motion planning research of mobile robots, especially in complex environment. Based on the research of the second order motion model, this paper puts forward a new method for adjusting robots to avoid obstacles in dynamic environment. A mathematical model is first established in which environmental information such as, destination of a mobile robot, velocity and direction of obstacles are considered. Secondly, a new particle swarm optimization (PSO) algorithm is used to search for solution of the multi-objective optimization problem as described in the mathematical model. Finally, by adjusting the velocity and direction of the mobile robot to avoid obstacles in real time, the robot can reach the goal safely. Simulation experiment shows that this method is better than tradition artificial potential field (APF) algorithm and its improved algorithm based on genetic algorithm for obstacle avoidance. |
| Author | Hua-Qing Min Xi-Jing Zheng Jin-Hui Zhu |
| Author_xml | – sequence: 1 surname: Hua-Qing Min fullname: Hua-Qing Min organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 2 surname: Jin-Hui Zhu fullname: Jin-Hui Zhu organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 3 surname: Xi-Jing Zheng fullname: Xi-Jing Zheng organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China |
| BookMark | eNotkM1KAzEURgNWsK19Ad3kBabe5DaTyVIG_6BS8QfclUxyi7d0MqUTK_XpLdhvc3aHwzcSg9QlEuJKwVQpcDdP9fO8nmoAM1VG29nMnokR2ArQgVNqIIZalVAoxM8LMen7NRyHzpQIQ_G6aPrsw4ak33ccfQokfzh_yfZ7k7nomjWFzHuS3TZzy78-c5dkc5AvbwvJScZD8i0HSWnPuy61lPKlOF_5TU-TE8fi4_7uvX4s5ouHp_p2XrACkwvty9XMRIjQGDrWIzoXnUV_7LKRwPhKl4SV9abRGCvSqgpehdK4xhIGHIvrfy8T0XK749bvDsvTBfgHtxZSRQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLC.2005.1527447 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 2956 Vol. 5 |
| ExternalDocumentID | 1527447 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i105t-2a6f45d0d0b5e2003399d973a6307de05a826e387a5b23d8e218ca1c659b7e3c3 |
| IEDL.DBID | RIE |
| ISBN | 0780390911 9780780390911 |
| ISSN | 2160-133X |
| IngestDate | Tue Aug 26 19:21:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i105t-2a6f45d0d0b5e2003399d973a6307de05a826e387a5b23d8e218ca1c659b7e3c3 |
| ParticipantIDs | ieee_primary_1527447 |
| PublicationCentury | 2000 |
| PublicationDate | 20050000 |
| PublicationDateYYYYMMDD | 2005-01-01 |
| PublicationDate_xml | – year: 2005 text: 20050000 |
| PublicationDecade | 2000 |
| PublicationTitle | 2005 International Conference on Machine Learning and Cybernetics |
| PublicationTitleAbbrev | ICMLC |
| PublicationYear | 2005 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000395630 ssj0000744891 |
| Score | 1.4581821 |
| Snippet | The second order motion model is one of the fundamental questions, a mostly important object in motion planning research of mobile robots, especially in... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2950 |
| SubjectTerms | Acceleration Computer science Layout Mathematical model Mobile robots Motion planning multi-objective optimization Orbital robotics Particle swarm optimization particle swarm optimization algorithm Robots obstacle avoidance second order motion model Shape Solid modeling |
| Title | Obstacle avoidance with multi-objective optimization by PSO in dynamic environment |
| URI | https://ieeexplore.ieee.org/document/1527447 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTpwGbIi3cuBItvSRJj1PTAMxNgGTdpvyqjQQLUIdEvx6nLQrD3Hg1lSp2qSu_dn1ZyN0bgToRWYo4SpNCNjrgIAOZERRHQjDNaPGEYUnt8l4Hl8v2KKFLhoujLXWJ5_Zvjv0__JNodcuVDZwLVjjmG-hLS6SiqvVxFNolDalrvwYZlYN88IgoQRcsYX32gVMBBsZ1MV3mvGGUEPTwdVwcjOswi31HX-0XvGWZ9RBk80zVwknT_11qfr641c5x_8uagf1vjh-eNZYr13Usvke6myaPOD6m--iu6kCAAnCheVbsTJOSLAL3mKfikgK9VipTFyA8nmuWZ1YvePZ_RSvcmyqlvf4G6Ouh-ajy4fhmNSNGMgK4FdJQplkMbxQQxWzLpsNUI1JeSRhw7mxlElwUmwkuGQqjIywgBu0DHTCUsVtpKN91M6L3B4gHKYSNILKRKYzwIogDxquNCKLHak3YIeo67Zo-VLV2ljWu3P09-ljtO1LqfqcsBPULl_X9hRAQqnOvHR8Apugs6s |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_Dowpbu9nEmElAKRCHhRrqPJmhsjSkm-uud3Zb6iAdv3WabdrfTmW-m880gdKUC0ItcUeKL0CNgrx0COpATQaUTKF9yqgxROBp7gzm7XfBFDV1XXBittU0-021zaP_lq0yuTaisY1qwMuZvoW3OGOMFW6uKqFA3rIpd2THMLVrmdR2PEnDGFtZvD2AiWEmnLL9TjTeUGhp2hr1o1CsCLuU9fzRfsban30DR5qmLlJOn9joXbfnxq6Djf5e1h1pfLD88rezXPqrp9AA1Nm0ecPnVN9H9RACEBPHC8Vu2UkZMsAnfYpuMSDLxWChNnIH6eS55nVi84-nDBK9SrIqm9_gbp66F5v2bWW9AylYMZAUALCfd2EsYvFJFBdcmnw1wjQp9N4YN95WmPAY3RbuBH3PRdVWgATnI2JEeD4WvXekeonqapfoI4W4Yg04QSZDIBNAiSISEK1WQMEPrdfgxapotWr4U1TaW5e6c_H36Eu0MZtFoORqO707Rri2sagMkZ6iev671OUCGXFxYSfkEOkW29g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Obstacle+avoidance+with+multi-objective+optimization+by+PSO+in+dynamic+environment&rft.au=Hua-Qing+Min&rft.au=Jin-Hui+Zhu&rft.au=Xi-Jing+Zheng&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780390911&rft.issn=2160-133X&rft.volume=5&rft.spage=2950&rft.epage=2956+Vol.+5&rft_id=info:doi/10.1109%2FICMLC.2005.1527447&rft.externalDocID=1527447 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |