Obstacle avoidance with multi-objective optimization by PSO in dynamic environment

The second order motion model is one of the fundamental questions, a mostly important object in motion planning research of mobile robots, especially in complex environment. Based on the research of the second order motion model, this paper puts forward a new method for adjusting robots to avoid obs...

Full description

Saved in:
Bibliographic Details
Published in2005 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2950 - 2956 Vol. 5
Main Authors Hua-Qing Min, Jin-Hui Zhu, Xi-Jing Zheng
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0780390911
9780780390911
ISSN2160-133X
DOI10.1109/ICMLC.2005.1527447

Cover

Abstract The second order motion model is one of the fundamental questions, a mostly important object in motion planning research of mobile robots, especially in complex environment. Based on the research of the second order motion model, this paper puts forward a new method for adjusting robots to avoid obstacles in dynamic environment. A mathematical model is first established in which environmental information such as, destination of a mobile robot, velocity and direction of obstacles are considered. Secondly, a new particle swarm optimization (PSO) algorithm is used to search for solution of the multi-objective optimization problem as described in the mathematical model. Finally, by adjusting the velocity and direction of the mobile robot to avoid obstacles in real time, the robot can reach the goal safely. Simulation experiment shows that this method is better than tradition artificial potential field (APF) algorithm and its improved algorithm based on genetic algorithm for obstacle avoidance.
AbstractList The second order motion model is one of the fundamental questions, a mostly important object in motion planning research of mobile robots, especially in complex environment. Based on the research of the second order motion model, this paper puts forward a new method for adjusting robots to avoid obstacles in dynamic environment. A mathematical model is first established in which environmental information such as, destination of a mobile robot, velocity and direction of obstacles are considered. Secondly, a new particle swarm optimization (PSO) algorithm is used to search for solution of the multi-objective optimization problem as described in the mathematical model. Finally, by adjusting the velocity and direction of the mobile robot to avoid obstacles in real time, the robot can reach the goal safely. Simulation experiment shows that this method is better than tradition artificial potential field (APF) algorithm and its improved algorithm based on genetic algorithm for obstacle avoidance.
Author Hua-Qing Min
Xi-Jing Zheng
Jin-Hui Zhu
Author_xml – sequence: 1
  surname: Hua-Qing Min
  fullname: Hua-Qing Min
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 2
  surname: Jin-Hui Zhu
  fullname: Jin-Hui Zhu
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 3
  surname: Xi-Jing Zheng
  fullname: Xi-Jing Zheng
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
BookMark eNotkM1KAzEURgNWsK19Ad3kBabe5DaTyVIG_6BS8QfclUxyi7d0MqUTK_XpLdhvc3aHwzcSg9QlEuJKwVQpcDdP9fO8nmoAM1VG29nMnokR2ArQgVNqIIZalVAoxM8LMen7NRyHzpQIQ_G6aPrsw4ak33ccfQokfzh_yfZ7k7nomjWFzHuS3TZzy78-c5dkc5AvbwvJScZD8i0HSWnPuy61lPKlOF_5TU-TE8fi4_7uvX4s5ouHp_p2XrACkwvty9XMRIjQGDrWIzoXnUV_7LKRwPhKl4SV9abRGCvSqgpehdK4xhIGHIvrfy8T0XK749bvDsvTBfgHtxZSRQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2005.1527447
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 2956 Vol. 5
ExternalDocumentID 1527447
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i105t-2a6f45d0d0b5e2003399d973a6307de05a826e387a5b23d8e218ca1c659b7e3c3
IEDL.DBID RIE
ISBN 0780390911
9780780390911
ISSN 2160-133X
IngestDate Tue Aug 26 19:21:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-2a6f45d0d0b5e2003399d973a6307de05a826e387a5b23d8e218ca1c659b7e3c3
ParticipantIDs ieee_primary_1527447
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395630
ssj0000744891
Score 1.4581821
Snippet The second order motion model is one of the fundamental questions, a mostly important object in motion planning research of mobile robots, especially in...
SourceID ieee
SourceType Publisher
StartPage 2950
SubjectTerms Acceleration
Computer science
Layout
Mathematical model
Mobile robots
Motion planning
multi-objective optimization
Orbital robotics
Particle swarm optimization
particle swarm optimization algorithm
Robots obstacle avoidance
second order motion model
Shape
Solid modeling
Title Obstacle avoidance with multi-objective optimization by PSO in dynamic environment
URI https://ieeexplore.ieee.org/document/1527447
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTpwGbIi3cuBItvSRJj1PTAMxNgGTdpvyqjQQLUIdEvx6nLQrD3Hg1lSp2qSu_dn1ZyN0bgToRWYo4SpNCNjrgIAOZERRHQjDNaPGEYUnt8l4Hl8v2KKFLhoujLXWJ5_Zvjv0__JNodcuVDZwLVjjmG-hLS6SiqvVxFNolDalrvwYZlYN88IgoQRcsYX32gVMBBsZ1MV3mvGGUEPTwdVwcjOswi31HX-0XvGWZ9RBk80zVwknT_11qfr641c5x_8uagf1vjh-eNZYr13Usvke6myaPOD6m--iu6kCAAnCheVbsTJOSLAL3mKfikgK9VipTFyA8nmuWZ1YvePZ_RSvcmyqlvf4G6Ouh-ajy4fhmNSNGMgK4FdJQplkMbxQQxWzLpsNUI1JeSRhw7mxlElwUmwkuGQqjIywgBu0DHTCUsVtpKN91M6L3B4gHKYSNILKRKYzwIogDxquNCKLHak3YIeo67Zo-VLV2ljWu3P09-ljtO1LqfqcsBPULl_X9hRAQqnOvHR8Apugs6s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_Dowpbu9nEmElAKRCHhRrqPJmhsjSkm-uud3Zb6iAdv3WabdrfTmW-m880gdKUC0ItcUeKL0CNgrx0COpATQaUTKF9yqgxROBp7gzm7XfBFDV1XXBittU0-021zaP_lq0yuTaisY1qwMuZvoW3OGOMFW6uKqFA3rIpd2THMLVrmdR2PEnDGFtZvD2AiWEmnLL9TjTeUGhp2hr1o1CsCLuU9fzRfsban30DR5qmLlJOn9joXbfnxq6Djf5e1h1pfLD88rezXPqrp9AA1Nm0ecPnVN9H9RACEBPHC8Vu2UkZMsAnfYpuMSDLxWChNnIH6eS55nVi84-nDBK9SrIqm9_gbp66F5v2bWW9AylYMZAUALCfd2EsYvFJFBdcmnw1wjQp9N4YN95WmPAY3RbuBH3PRdVWgATnI2JEeD4WvXekeonqapfoI4W4Yg04QSZDIBNAiSISEK1WQMEPrdfgxapotWr4U1TaW5e6c_H36Eu0MZtFoORqO707Rri2sagMkZ6iev671OUCGXFxYSfkEOkW29g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Obstacle+avoidance+with+multi-objective+optimization+by+PSO+in+dynamic+environment&rft.au=Hua-Qing+Min&rft.au=Jin-Hui+Zhu&rft.au=Xi-Jing+Zheng&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780390911&rft.issn=2160-133X&rft.volume=5&rft.spage=2950&rft.epage=2956+Vol.+5&rft_id=info:doi/10.1109%2FICMLC.2005.1527447&rft.externalDocID=1527447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon